
NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A2 6 8 941

DTIC
ELECTE
S E P081993

THESIS E D

SPECIFICATION AND ANALYSIS
OF A HIGH SPEED TRANSPORT PROTOCOL

by

H. Alphan TIPICI, LTJG

June 1993

Thesis Advisor Prof. G.M. Lundy

Approved for public release; distribution is unlimited.

93-20694 9II I;h IIl

UNCIASIFIW
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
l& REPORT SECURITY CLASSIFICATION UNCLASSIFIED lb. RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY 3. DISTHRIBU1ON/AVAILABIUTY OF REPORT
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release;

distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

SNAME OF EIDFOR M G ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
omputer 9cience"Vept. (if applicable) Naval Postgraduate School

Naval Postgraduate School CS
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS '
PROGRAM RPROJECT TASKK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Secwuiy Classification)
SPECIFICATION AND ANALYSIS OF A HIGH SPEED TRANSPORT PROTOCOL(Unclassified)

Sp'ici, ftu~se~ym ~pnan, LTJG.
TYP• EI•ORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT

astezrs esis FROM TO June 1993 95
16. SUPPLEMENTARY NOTATIONI'I views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the United States Government.

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Formal Specification, Transport Protocol, System State Analysis, Global
Analysis, SCM, CFSM

19. ABSTRACT (Contue on revese if necessary and idenlify by block number)
While networks have been getting faster, perceived throughput at the application has not always increased

accordingly and the bottleneck has moved to the communications processing part of the system. The issues that cause
the performance bottlenecks in the current transport protocols are discussed in this thesis, and a further study on a
high speed transport protocol which tries to overcome these difficulties with some unique features is presented. By
using the Systems of Communicating Machines (SCM) model as a framework, a refined and improved version of the
formal protocol specification is built over the previous work, and it is analyzed to verify that the protocol is free from
logical errors such as deadlock, unspecified reception, unexecuted transitions and blocking loops. The analysis is
conducted in two phases which consists of the application of the assosciated system state analysis and the simulation
of the protocol using the programming language ADA. The thesis also presents the difficulties encountered during
the course of the analysis, and suggests possible solutions to some of the problems.

20, DISTFIIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
11 UNCLASSIFRED/UNLIMITED " SAME AS RPT. Q DuC USERS UNCLASSIFIED

F BLE INDIVIDU~r _22b TLPHONE (Incude Area Code) 12CIT SMO
n(408) "y0-2094/,2440

DO FORM 1473,84 MAR 83 APR st fo may be used util exhausted SECURITY CLASSIFICATION OF THIS PAGE

All othr edions are obsolo UNCLASSIFIED
i

Approved for public release; distribution is unlimited

SPECIFICATION AND ANALYSIS
OF A HIGH SPEED TRANSPORT PROTOCOL

by
H. Alphan Tipici

Lieutenant Junior Grade, Turkish Navy

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1993

Author: (H./II .
H(Alphan MIi~ci-

Approved By:
G.M. Lundy, Thesis Adi

!••anTk hng knd Reader

ii

ABSTRACT

While networks have been getting faster, perceived throughput at the application has

not always increased accordingly and the bottleneck has moved to the communications

processing part of the system. The issues that cause the performance bottlenecks in the

current transport protocols are discussed in this thesis, and a further study on a high speed

transport protocol which tries to overcome these difficulties with some unique features is

presented. By using the Systems of Communicating Machines (SCM) model as a

framework, a refined and improved version of the formal protocol specification is built over

the previous work, and it is analyzed to verify that the protocol is free from logical errors

such as deadlock, unspecified reception, unexecuted transitions and blocking loops. The

analysis is conducted in two phases which consists of the application of the associated

system state analysis and the simulation of the protocol using the programming language

ADA. The thesis also presents the difficulties encountered during the course of the analysis,

and suggests possible solutions to some of the problems.

Accesion For

NTIS CRA&I
DTIC TAB
Unannounced El
Justification

B y ..
Dist, ibution I

Availability Codes

Avail and / or
Dist Special

UIP/

DTIrC QUrALITrY INSOFieD' t

TABLE OF CONTENTS

I. INTRODU CTION .. 1

A. BACKGROUND .. 1

B. OBJECTIVES ... 3

C. SCOPE AND ORGANIZATION OF THE THESIS 4

11. PROBLEMS WITH EXISTING TRANSPORT PROTOCOLS 5

A. OPERATING SYSTEM OVERHEAD .. 6

B. TIMERS AND ROUND TRIP DELAY ESTIMATION 7

C. NON-STANDARD PACKET FORMATS ... 8

D. GO-BACK-N METHOD OF ERROR RECOVERY 8

E. FLOW CONTROL TIED TO ERROR DETECTION AND RECOVERY 10

EIl. SNR TRANSPORT PROTOCOL ... 12

A. DESIGN PHILOSOPHY .. 12

B. MODES OF OPERATION ... 14

C. MACHINE ORGANIZATION AND GENERAL OVERVIEW 15

D. SERVICES PROVIDED ... 17

1. Quality of service ... 17

2. Multiplexing, demultiplexing ... 17

3. Connection management ... 17

4. Sequenced delivery .. 19

5. Flow control .. 19

6. Error recovery ... 20

E. PACKET FORMATS AND THEIR TRANSMISSIONS 20

1. Transmitter and Receiver Control Packets ... 21

a. Control Packet Transmission Periods 21

iv

b. Control Packet Formats .. 23

2. Data Packet Form ats .. 25

F. COMMUNICATION STRUCTURES ... 25

1. Buffers .. 25

2. RECEIVE and AREC .. 26

3. LUP Table ... 26

IV. THE SPECIFICATION MODEL:

SYSTEMS OF COMMUNICATING MACHINES (SCM) 29

A. DEFINITION OF THE SCM MODEL .. 29

B. SYSTEM STATE ANALYSIS .. 31

1. Definitions .. 31

2. Analysis Algorithm .. 32

3. Comparison with the Global Analysis ... 33

V. FORM AL SPECIFICATION .. 35

A. COMMUNICATION STRUCTURES FOR THE SPECIFICATION 35

1. Comm unication Channels ... 35

- a. TCHAN ... ; 36

b. R _CHAN .. 37

2. Buffers .. 37

a. OUTBUF .. 37

b. INBUF .. 39

3. RECEIVE .. 40

4. AREC .. 40

B. FINITE STATE MACHINE DESCRIPTIONS .. 41

1. M achine TI .. 41

2. M achine T2 ... 44

3. M achine'T3 .. 46

4 M achine T4 ... 48

v

5. Machine RI ... 50

6. Machine R2 .. 51

7. Machine R3 .. 53

8. Machine R4 .. 55

C. SUBROUTINES .. 56

1. Subroutines used by the transmitter ... 56

2. Subroutines used by the receiver .. 60

VI. ANALYSIS ; 66

A. SYSTEM STATE ANALYSIS OF THE SNR PROTOCOL 66

1. Software Tool For the System State Analysis of the SNR Protocol 67

2. Results of the System State Analysis ... 69

a. Connection Establishment Phase Analysis 69

b. Data Transfer Phase Analysis .. 73

c. An Improved Method .. 74

B. SOFTWARE SIMULATION OF THE SNR PROTOCOL 77

1. General Description .. 77

2: Simulation Results ... 78

VII. CONCLUSION .. 80

A. SUMMARY OF THE RESEARCH .. 80

B. CONTRIBUTIONS OF THIS THESIS ... 81

C. FURTHER RESEARCH OPPORTUNITIES .. 81

LIST OF REFERENCES .. 83

INITIAL DISTRIBUTION LIST .. 85

vi

LIST OF FIGURES

Figure 1: Network, Hosts, Entities and Protocol Processors 15

Figure 2: M achine Organization .. 16

Figure 3: Receiver control packet format ... 23

Figure 4: Transmitter control packet format ... 24

Figure 5: Data packet format 25

Figure 6: Machine Organization Including the Shared Variables 36

Figure 7: OUTBUF .. 38

Figure 8: INBUF and RECEIVE .. 39

Figure 9: TI State Diagram ... 42

Figure 10: T2 State Diagram ... 44

Figure 11: T3 State Diagram ... 47

Figure 12: T4 State Diagram ... 49

Figure 13:R1 State Diagram ... 50

Figure 14: R2 State Diagram ... 52

Figure 15: R3 State Diagram ... 54

Figure 16: R4 State Diagram ... 55

Figure 17: Transmitter Subroutines ... 58

Figure 18: Receiver Subroutines .. 62

Figure 19: Algorithm of procedure ANALYZE .. 68

Figure 20: Connection Establishment System State Analysis 70

Figure 21: Part of M ode-0 Analysis ... 73

Figure 22: Sample Analysis Using Indexed Transitions ... 76

Figure 23: General Task Structure .. 77

vii

L INTRODUCTION

A. BACKGROUND

The invention of the fiber optic cable has the same significance in the world of

telecommunications as the invention of transistor in electronics. Now that we can transmit

gigabits of information per second, we can realize the dreams of the past. This technology

is still under development and it will continue to achieve yet higher data rates. Ultimately

all information will be digitized, and the networks will move bits representing voice, TV,

high definition TV, computer data, etc. thousands of times faster than the current networks.

However, the current implementations of communications protocols cannot fully

utilize this potential. The throughput at the application has not increased in proportion to

the network speed. So, instead of being able to achieve gigabits per second, the user can at

best achieve the maximum throughput and end-to-end delay available from his

communications protocol processor which is usually only a small fraction of the

transmission bandwidth [HEAT89]. The communications processing part of the system has

become the bottleneck today. Consequently, a tremendous amount of research has been

devoted to the development of current standards or their implementations to mach the data

rates of fiber optic networks.

The transport protocol layer of a communications system is the first layer which

provides an end-to-end connection through the network, and it is the keystone of the whole

architecture. This layer, especially in connectionless protocols has considerable

functionality, and is typically executed in software by the host processor at the end points

of the network. It is thus a likely source of processing overhead and may be responsible for

the low throughput of the whole system [CLAR89].

There are two approaches to improve the speed of the transport protocols [STAL91]:

Improve the performance of the existing protocols,

I

* Design new protocols with the networking environment clearly in mind.

The defenders of the first approach claim that the protocols are not in fact the source

of the overhead often observed in packet processing, and that the current protocols can

support very high speeds if they are properly implemented. These researchers try to

improve methods of optimization (like header prediction), or interfacing the protocol with

the host operating system and the rest of the environment in order to gain better

performance from the implementations of the standard protocols.

Most of the research work done in this area is usually concentrated on two popular

protocols: classes of protocols which implement the Open Systems Interconnection Model

(OSI)1 and the Transmission Control Protocol (TCP/IP)2. In [HEAT89], the authors try to

identify the factors that affect performance in implementations of the layers of the OSI

protocols. They note that all transport level protocols offering the same services as TP4

have certain implementation problems in common such as timer management, buffer

management, connection state management, transfer of data from the user, division of the

protocol processing into processes, interprocess communication, scheduling, and that the

choices made in solving these problems in a particular implementation have a dramatic

effect on performance. In [CLAR89], the authors present the results of an analysis made on

the processing overhead of TCP, and conclude that the reasons for the slowness of the

protocol lie in the implementation and the environmental factors. They feel that the

experience gained with the current protocols can be effectively used to improve them and

that casting the protocols in silicon may yield inflexible protocols which cannot be made to

work better.

The OSI reference model, which is developed by the International Organization for Standardization
(ISO), is a framework for defining standards to link heterogeneous computers. For more information see
[STAL91].

2 TCP is a transport protocol from the Internet protocol suite. It is always used on top of a network level
protocol called Internet Protocol, and commonly known as TCP/IP. For more information see [STAL911.

2

Other researchers defending the second approach try to design new protocols from

scratch which make best use of the high speed networks. These protocols are called

lightweight transport protocols. Examples of experimental lightweight protocols include

NETBLT (Network Bulk Transfer), VMTP (Versatile Massage Transaction Protocol),

XTP (Express Transfer Protocol) and SNR (Sabnani, Netravali and Roome AT&T Bell

Labs Protocol, also called high speed transport protocol) protocols.

The major goal of all of these protocols is high throughput. For this purpose, NETBLT

uses a rate control scheme (packets per second) which is based on the network congestion,

groups packets into blocks and uses selective retransmission error recovery. VMTP also

uses packet grouping and selective retransmission, however, instead of using rate control,

it chooses to transmit large groups of packets in a burst as fast as the network allows, which

is found to be more efficient in processing cost. XTP is designed for hardware

implementation, and it combines the transport layer with the network layer. Flow control

in XTP is achieved through the use of parameters which provide visibility of the receiver's

buffer to the transmitter. In addition to that, it also uses rate control and selective repeat

method of error recovery.

B. OBJECTIVES

This thesis is on one of those lightweight protocol mentioned above, the SNR protocol.

The SNR transport protocol is an attempt to overcome the difficulties experienced by the

current transport protocols with some unique features which are different than the features

of the other lightweight protocols. It was first introduced in [NETR90] by using the

Communicating Finite State Machines (CFSM) model, and in [MCAR92] a formal

specification was given by using the Systems of Communicating Machines (SCM) model.

This thesis will present the results of a further study on this protocol which consists of

(i) Refining and improving the SCM specification given in [MCAR92],

(ii) Applying of the associated system state analysis to the protocol,

(iii) Simulating the protocol by using a high level programming language (ADA).

3

One of the two major goals of this thesis is to improve the specification by completing

the missing points. The second goal is to verify the specification after the improvements.

For this purpose, first the system state analysis will be applied to the protocol, and then the

protocol will be simulated.

C. SCOPE AND ORGANIZATION OF THE THESIS

It is intended to avoid getting into the implementation details while making the

specification and simulating the protocol. The original protocol is improved and some

details are made clearer in order to apply the system state analysis and the simulation.

However, the goal was always to stay close to the original specification and to add only

what was needed. These modifications will be pointed out as necessary, however the

original specification presented in [NETR90] and the SCM specification presented in

[MCAR92] will not be repeated here.

The rest of the thesis is organized into six chapters. Chapter II discusses the reasons

why the existing transport protocols cannot reach the high speeds required by the fiber optic

media. Chapter MII introduces the SNR transport protocol and its solutions to the problems

encountered by the current protocols. Chapter IV defines the SCM model which is used to

formally specify the protocol and the associated analysis method, system state analysis.

Chapter V includes the formal specification with SCM model, and Chapter VI summarizes

the results of the system state analysis study and simulation of the protocol. Finally,

Chapter VII provides the conclusion of the thesis.

4

U. PROBLEMS WITH EXISTING TRANSPORT PROTOCOLS

One important consideration in the design of the conventional transport protocols was

not to saturate the transmission media with too high data rates. The protocols were faster

than the underlying media and the throughput was limited by the bandwidth. Therefore,

methods were developed to decrease the number of bits transmitted at the expense of

increased processing overhead. An example of this is the variable length packets. In spite

of this, the processing speeds were still higher than the bit rates provided by the media.

To give an idea about the data rates of the traditional networks, characteristics of some

of the constituent networks of DARPA Intemet1 are shown in TABLE 1 (taken from

[STAL9 1]). Another example is TYMNET, which was developed to provide connection of

terminals to central time sharing computers. Typical data rates of TYMNET are 9600 bps

for land links and 56-kbps for satellite links.

TABLE 1: DARPA INTERNET NETWORK CHARACTERISTICS

Network Message Size Guaranteed
Type (Octets) Speed& Delayb Delivery Notes

ARPANET 1008 Medium Medium Yes WAN
SATNET 256 Low High No Satellite network

Pronet 2048 High Low Yes LAN

Ethernet 1500 High Low Yes LAN

Telenet 128 LOw Medium Yes WAN

Packet radio 254 Medium Medium No Varying topology

Wideband 2000 High High No Satellite network
"Low speed is < 100 kbps; medium speed is 100 kbps to 1 Mbps; high speed is > 1 Mbps.
bLow delay is < 50ms; medium delay is 50 to 500 ms; high delay is > 500 ms.

1 DARPA Internet is an internet project supported by DOD which consists of over 150 interconnected

networks. For more information see [STAL91] and [D0D83].

5

These examples show that none of the conventional networks even come close to the

gigabit per second data rate level of a fiber-optic network. With the improvement of the

fiber optic technology, the networks became faster. However, the processing speeds did not

increase at the same rate and the bottleneck has moved to the communications processing

part of the system.

In this chapter, several problems which are hindering utilization of the full potential

offered by the fiber optic technology will be discussed.

A. OPERATING SYSTEM OVERHEAD

An analysis has been done on one of the most commonly used transport protocols,

TCP, and the results are summarized in [CLAR89]. The authors have found the operating

system to be the most pronounced overhead. The following paragraph is an excerpt taken

from that paper:

The first overhead is the operating system, since packet processing requires

considerable support from the operating system. It is necessary to take an interrupt,

allocate a packet buffer, free a packet buffer, restart the I/O device, wake up a process

(or two or three), and reset a timer. In a particular implementation there may be other
costs that-we did not identify in this study.

In a typical operating system, these functions may turn out to be very expensive.

Unless they were designed for this function, they may not match the performance

requirements at all.

Even if the future protocols are implemented in hardware, the operating system will

continue to be a source of overhead since the protocol must be interfaced with the host

operating system. However, measures can be taken to get the best support from the

operating system, some of which are listed below:

"• Parallel processing of independent functions of the protocol,

"* Avoiding the movement of data in the memory, since this is the most costly operation

in packet processing,

* Making minimal use of operating system timer package.

6

As the operating systems become increasingly faster, the processing times of the

protocols decreases. Nevertheless, the operating system will continue to be a challenge to

the future protocol designer.

B. TIMERS AND ROUND TRIP DELAY ESTIMATION

Timer mechanisms are the backbones of current transport protocols. The only way of

recovering from channel losses and performing error recovery is through the use of timers.

There must be a timer associated with every data packet, if a positive acknowledgment

scheme is to be used. Each time a packet is transmitted or received, a timer must be set,

monitored, cleared and reset. The use of timers is a great burden and has significant

contribution to the processing overhead.

Besides being difficult to manage, another important problem associated with the

timers is the calculation of the reset values. A retransmission timer should be set to a value

slightly longer than the round trip delay (RTD). If the value is too small, there will be many

unnecessary transmissions, wasting network capacity and delaying transmissions of new

packets. If the value is too large, the protocol will be slow to respond to data packet losses.

Worse, the round trip delay is variable even under constant load and statistics of the delay

will vary with changing network conditions. Those problems become duplicated with high

speed networks, since estimating the timer value a fraction of a second off might mean

wasting thousands of packets.

Many solutions have been proposed to solve this problem, each of which have its own

drawbacks. The SNR protocol suggests a different approach by using counter variables

instead of explicit timers. The details of this method will be explained in the next chapter.

This method does not require a timer to be maintained associated with each data packet and

variations of the round trip delay are automatically reflected onto the retransmission

timeout values. Once an average estimate of the RTD is obtained, the protocol naturally

adjusts the retransmission frequency in a very simple way.

7

C. NON-STANDARD PACKET FORMATS

Since the current protocols are virtually faster than the underlying conventional

networks, the major concern in current protocols is not to overflow the transmission

channel. Therefore these protocols use variable size packets that are just large enough to

fulfill the need. Moreover, redundant transmission of packets are prohibited. This is done

in expense of increased overhead, since the variable length packets increase the amount of

processing time at the receiver due to decoding operations. With slower networks, this

increase in the processing time was not a problem, but as the networks got faster, the

problem became more and more noticeable. In fact, the researchers are looking for ways of

reducing this overhead like header prediction methods even with the current networks

[CLAR89].

With fiber optic networks, the situation is just the reverse. The bandwidth is so large

that trying to minimize the packet length is a wasted effort. Also, the overhead increase

caused by the non-standard packet formats can be very costly for these high speed

networks. Increasing the processing time only for a fraction of a second might mean

wasting useful time during which thousands of packets could be transmitted.

The obvious solution is using standard packet formats. The advantages of standardized

packets that help improvement of the processing times can be summarized as follows:

* Several components of the packets can be processed in parallel and routed to their

appropriate places within the receiver's architecture.

"• Decoding operations at the receiver are not necessary,

"* Easy hardware implementation.

D. GO-BACK-N METHOD OF ERROR RECOVERY

The shortcomings of the current protocols mentioned so far were only increasing the

packet processing times. A more serious defect of current protocols is the utilization of go-

back-N method of error recovery. In this method, when the receiver detects the loss of a

packet, it sends a negative acknowledgment message (NAK) to the transmitter, requesting

8

L

retransmission of all the packets after the last correctly received packet. If the data rates are

high or the transmission channel is long, this method may require many good packets to be

retransmitted, which may be quite costly. Consider the following example:

Assume that data is being transmitted over a 2000 km transmission channel with 1000

bit packets, and that go back-N method is being used. Assume further that the very first

packet gets lost. When the receiver starts receiving packet number 2, it detects the loss and

sends a NAK- 1 message. This message arrives at the transmitter one RTD period later after

it starts transmitting packet 2, which is 20 ms in this case (ignoring the packet processing

time at the receiver). By using the formula RTD x (datarate) / (packet size) to calculate

the number of outstanding packets at one time, the following results can be obtained:

(i) If the data rate is 50,000 bps (which is the case of a traditional network), then there

can be at most one outstanding data packet when the transmitter receives the NAK

message. In fact, the transmitter will have just finished transmitting packet number 2.

(ih) If a fiber optic network with 1 Gb/s data rate is being used, the transmitter may

have transmitted up to 40,000 data packets when the NAK arrives.

In either case, according to the go-back-N method, all the packets must be

retransmitted. This means wasting 1 packet in a traditional slow network versus 40,000

packets in a fast network, which is clearly unacceptable.

Therefore, the go-back-N method of error recovery can cause significant loss of

throughput. To overcome this problem, the new experimental lightweight protocols are

oriented for selective repeat method of retransmission in which only the lost packet is

resent. One difficulty with the selective repeat retransmission is that large tables must be

maintained and rather complicated error recovery algorithms must be utilized. To avoid

these difficulties, most of the high speed protocols use the concept of blocking, which is

also adapted to the SNR protocoL Detailed explanation of using this method in the protocol

is left to the following chapters.

9

E. FLOW CONTROL TIED TO ERROR DETECTION AND RECOVERY

A conservative flow control scheme which uses the sliding window technique may

limit the throughput of the protocol in long-delay situations [STAL9 1]. This is because the

sliding window technique normally does not decouple acknowledgments from flow

control. To clarify this point, consider the following situation:

Assume that the receiver has several window sizes of buffer space which is shared

between different logical connections. When the transmitter uses up all its credit by

transmitting a whole window of packets, it has to stop and wait for the window size to be

increased by acknowledgments. If the receiver acknowledges the first n packets, then the

transmitter increases its window size by n, allowing n more packets to be transmitted.

However, if the first packet of a window gets lost, then the receiver cannot acknowledge

any of the rest of the packets and has to wait for the lost packet to be recovered before it

increases the window size. On the other side of the network, the transmitter also has to wait,

since its credit has expired, and it cannot transmit any more packets. Therefore, both the

transmitter and the receiver wait idly for the retransmission timer to expire, doing no useful

work. If the network is a high speed network, this wait might mean wasting time during

which thousands of packets could be transmitted.

This example shows how error control halts the flow of packets even if the receiver

has enough buffer space. A better solution could be using a credit scheme which would

allow advancing the lower edge of the window, thus letting the transmitter to transmit more

packets without acknowledging any of the previously transmitted packets [STAL9 1].

These two functions have to be separated in order not to stop the flow because of the

lost packets. The transport protocols of the future will use rate control to slow down the

transmitter before the buffer limit has been reached rather than stopping the flow when the

buffer is full or a loss is detected. Another solution proposed in [MCAR92], which is

convenient to use in the SNR protocol, is to use prediction method. In this method, the

transmitter assumes that a packet is lost if a certain number of packets following the

unacknowledged packet has been acknowledged by the receiver, and retransmits the packet

10

before its timer expires. The specification given in this thesis does not include this feature,

however it is considered to be a potentially useful method.

11

HI. SNR TRANSPORT PROTOCOL

The reasons for the insufficient processing speeds of the existing transport protocols

to match the high data transmission speeds of optical telecommunication technology were

explained in the previous chapter. In this chapter, the basic ideas and the building blocks of

the SNR Transport Protocol will be presented, together with a description of how it

provides the necessary services expected from a transport protocol. Then, in the following

chapter, the formal specification of the protocol will be given using the SCM model.

The definitions of the abstract communication structures given in this chapter will be

parallel to the definitions given in [NETR90] to keep the originality. The extensions and

modifications made to the protocol for analysis and simulation purposes will be presented

in Chapter V.

A. DESIGN PHILOSOPHY

The purpose of the SNR protocol is to overcome the processing bottlenecks ano

insufficiencies experienced by the existing transport protocols. The key idea in the design

of the SNR protocol is to provide a high processing speed by simplification of the protocol,

reduction of the processing overhead and utilization of parallel processing. In order to

achieve these goals, the following design principles are observed:

"* Periodic exchange of complete state information and eliminating explicit timers,

"* Using selective repeat method of retransmission,

"* Using the concept of blocking,

"* Parallel processing.

Periodic exchange of complete state information. In most of the current protocols,

changes in state are exchanged only when certain events occur, such as detected loss of a

packet, buffer overflow, etc. This requires using a number of nonstandard and variable size

packet formats and elaborate error recovery procedures which complicates the protocol

12

processing significantly. Therefore, to avoid these complications and keep the protocol as

simple as possible, a different approach is taken in the SNR protocol by allowing exchange

of complete state information between the receiver and the transmitter on a frequent and

periodic basis. This technique increases the number of packets transmitted, but this increase

in the number of packets is negligible compared to the very high bandwidth of fiber and the

speedup it provides in processing. In addition to simplifying the protocol, this technique has

two more important advantages: First, it allows parallelizing the protocol processing and

therefore leads to higher performance. Secondly, with this method, the loss of a control

packet is not a problem since the information in the next control packet will supersede all

the previous information, thus, the recovery procedures required to overcome the lost

control packets are not needed. For the purpose of state information exchange, transmitter

and receiver control packets are used. These packets have standard sizes and formats for

faster processing.

Another very important consequence of this scheme is that it helps elimination of the

explicit timers used for error recovery purposes. This point will be left abstract for now, but

when the error recovery structure is explained later in this chapter, it will be clarified

Using selective repeat method of retransmission and blocking. As it was pointed

out before, go-back-N error recovery method potentially wastes network resources by

causing thousands of good packets to be retransmitted. Therefore, like other protocols

designed for high speed networks, this protocol also uses selective repeat method of

retransmission, and the concept of blocking. Blocking reduces the overhead of maintaining

large tables and complex procedures that are required for selective repeat procedures. A

group of packets (typically 8) is called a block. All of the packets constituting a block are

transmitted and handled separately by the network. Upon successful reception of all of the

packets in a block, the receiver acknowledges the block, rather than the individual packets.

If a packet in a block is faulty or missing then the whole block of packets are retransmitted.

This method is slightly different than a pure selective repeat algorithm in which only

the faulty packets are retransmitted, as it causes retransmission of other good packets in the

13

block. But it must be remembered that the fiber-optic media supporting the transport

protocol has very low error rates and retransmissions do not occur as frequently as in other

types of media, which the current transport protocols were designed for. On the other hand,

it is expected that the simplicity and high processing speeds gained this way will

compensate for this additional load.

Parallel processing. As mentioned in Chapter HI, one important source of overhead

for the transport protocols is the underlying operating system. Therefore, efficient use of

operating system resources is essential. This idea immediately calls for the concurrent

execution of several independent functions of the protocol, namely parallel processing. As

it will be explained shortly, the SNR protocol is composed of eight machines (four in the

transmitter and four in the receiver), each of which perform a specific function. These

machines operate almost independently with a small amount of interaction between them.

Consequently, the protocol automatically lends itself to parallel implementation. Since the

function of each machine is simpler than the protocol as a whole, they can also be

implemented on hardware with ease. This contributes significantly to the improvement of

the throughput performance.

B. MODES OF OPERATION.

In order to give some flexibility to the protocol, the following three modes of operation

are specified:

Mode 0 has no error control or flow control. It is suited for virtual circuit networks and

for the cases where quick interaction between the communicating entities is desired (e.g.

terminals connected to a'host) and short packets are used.

Mode 1 has no error control but provides flow control. This mode is suitable for real

time applications such as packetized voice or real-time monitoring of a remote sensor

where error control is not needed and packet sizes are small. This mode is also convenient

if the underlying network is reliable (like type-A network defined by ISO 1).

14

Mode 2 has both error control and flow control. This is the most reliable mode and it

is useful for large file transfers in all types of network services.

C. MACHINE ORGANIZATION AND GENERAL OVERVIEW

The protocol can be envisioned as connecting two host computers end-to-end across a

high speed network as shown in Figure 1:

Host Host

Figure 1: Network, Hosts, Entities and Protocol Processors.

This protocol requires a full duplex link between two host systems. Each host system

in the network consists of eight finite state machines (FSM), four for executing the

transmitter functions, and four for executing the receiver functions. Since an entity in a host

(such as application programs, file transfer packages, electronic mail facilities and

terminals) can either transmit or receive data, it can only use either the transmitter machines

or the receiver machines of the protocol. Therefore the protocol only specifies the

operations of the transmitter machines in the transmitting host and the operations of the

receiver machines in the receiving host. In this thesis, multiplexing of the entities will be

considered as an implementation detail and will be omitted.

The general organization of the machines is shown in Figure 2. Each machine in the

protocol performs a specific function in coordination with other machines. The

1 Three types of network service are defined by ISO: Reliable network service (Type-A), failure-prone

network Service (Type-B) and unreliable network service (Type-C). For more information see [STAL9 1].

Is

coordination is established by communicating through some shared variables which will

be explained later in the thesis.

and Fut2ans:atciOrnz ion
old blocks) data packets)

(Host interfae) pctcest incoming t eprest incoming (Host interface)control packets) R-CHANZ control packets) .

(d transmitter c tr (Spd receiver
control packts) control packets)

Figure 2: Machine Organization

Machine Tb is responsible for the transmission of new data packets and retransmission

of old packets as necessary through the transmitter channel. Machine T2 first establishes

the connection with the receiver and thereafter processes the incoming receiver control

packets and updates related tables and variables as the blocks are acknowledged. Machine

T3 sends transmitter control packets to the receiver periodically through the transmitter

channel Machine T4 is the host interface of the transmitter. It inserts the incoming data
strewn into the buffer for transmission by machine T1.

Machine R I removes the data packets from the transmitter channel and inserts them

into the buffer in order according to their sequence numbers and updates the related

variables and tables in the receiver. Machines R2 and R3 are receiver counterparts of

transmitter machines T2 and T3. Machine R2 replies the connection request messages sent

by machine 72. After the connection establishment, it receives the transmitter control

packets. Machine R3 sends the receiver control packets at periodic intervals through the

16

receiver channel. Machine R4 is the host interface of the receiver. It retrieves the data

packets from the buffer if they are in sequential order and passes them to the host.

D. SERVICES PROVIDED

The protocol provides for the following general services:

"* Quality of service,

"* Multiplexing, demultiplexing,

"• Connection management,

"* Sequenced delivery,

"* Flow control,

"* Error recovery.

1. Quality of service.

As explained previously, the protocol provides for three modes of operation. The

number of services provided and quality of transmission depend on the selected mode of

operation: Mode 0 does not have error recovery, sequenced delivery and flow control, and

mode I does not have error recovery. Mode 2 is the most reliable mode which has both error

control and flow control functions. The users of the protocol can choose the operation mode

depending on their needs. Although the protocol does not specify dynamic change of

operation mode, this feature can also be added to the protocol with minor changes.

2. Multiplexing, demultiplexing

Multiplexing and demultiplexing is done in all three modes. The front-end processor

implementing the protocol is thought of as connecting several hosts and many logical

connections within each host to the network (see Figure 1).

3. Connection management

The transmitting host is responsible for establishing and terminating connections.

The initial connection establishment phase is based on the standard three-way handshake

in which the following parameters are negotiated: mode of communication, peak

17

bandwidth per connection, packet size, block size, buffer required at the receiver in units

of blocks. In addition, it is expected that an estimate of the round-trip delay (RTD) would

be available during the connection set-up.

Connection establishment: The machines involved in connection establishment

phase are transmitter machine T2 and receiver machine R2. Upon reception of transmission

signal from the host, the transmitter sends a connection request (Connreq) message

through machine T2, which includes the parameter values that the transmitting entity wants

to use. Machine R2 of the receiving host evaluates the requested parameters and responds

by sending a connection acknowledgment (Connack) message that includes the modified

values for the parameters under which the receiver cant operate. If machine T2 cannot get a

Connack in a certain period of time, it retransmits the Conn req again. After a number of

unsuccessful attempts, the transmitter quits and notifies the host of unsuccessful

connection.

When machine T2 receives the Connack, it evaluates the parameters and if the

parameter values are acceptable by the transmitter, then it transmits a connection

confirmation (Conncon]) message and the data transfer phase starts, otherwise, the

transmitter rejects the connection and notifies the host of the failed connection attempt. The

receiver goes into data transfer phase with the reception of the confirmation message, the

first transmitter control packet or the first data packet.

Connection termination: Connection is normally terminated by a disconnect

(Disc) message sent by machine n2 after transmission of all the data packets. Either side

can also abnormally terminate the connection if they cannot receive any control packets for

a long time. In this case, the transmitter sends a Disc message and leaves the network, and

the receiver just aborts the connection after it timeouts. Thereafter, the host interface

machines (T4 and R4) notify their hosts of the abnormal disconnection.

18

4. Sequenced delivery

Especially in connectionless data transfers there is a risk that the data packets will

not arrive in the order in which they were sent, because they may traverse different paths

through the network. This protocol provides for sequenced delivery in modes 1 and 2. It is

the receiver's responsibility to reorder the data packets according to their sequence

numbers. The basic structure used in reordering is the buffer at the receiver.

This service also includes the detection of duplicate packets. Packets may be

duplicated either by the network or because of retransmissions. To detect duplicate packets,

the sequence numbers of the packets are used. Each time a packet is received (data packet

or control packet), a check is made to see if the packet has already been received. If the

packet is a duplicate, it is discarded.

5. Flow control

Flow control is done only in modes 1 and 2. For this purpose, the receiver writes

the available buffer space it has in units of blocks into the buffer available field of the

receiver control packets. The following variables are used in the transmitter for flow control

purposes: -

L is the maximum window size in units of blocks. It is chosen to be slightly larger

F RTD x maximum bandwidth 1
than[L(numberofbitsinablock) J"

NOU is the number of outstanding blocks which have been transmitted but not

acknowledged yet. Every time the transmitter completes the transmission of a block of

packets, it increments NOU, and every time it receives a receiver control packet, it

decrements NOU by :he number of acknowledged blocks. The transmitter starts

transmission of another new block only if NOU is less than L and buffer available is

greater than NOU. For retransmissions, this check is not necessary since the retransmitted

block already has a reserved buffer space in the receiver (NOU is decremented when the

block is first transmitted).

19

6. Error recovery

The protocol provides for this service only in mode 2 operation. In this mode, if

a block has not been acknowledged for a predetermined amount of time, then all of the

packets constituting this block are retransmitted. The transmitter maintains necessary

structures for error recovery which will be explained later.

Since there is no error recovery in mode 1, a problem is encountered when the

packets get lost during the data transfer in this mode: for how long should the receiver wait

for the lost packets and what action should be taken? This problem has not been addressed

in the original protocol and later in [MCAR92]. In this thesis, a solution will be suggested

which uses the following approach: if a packet which is to be retrieved is missing, then wait

until two packets with a higher sequence number is received and then skip the missing

packet and set the corresponding RECEIVE array bit to 1 as if it were received correctly.

The reason for waiting for the reception of two packets is that it is the smallest number of

packets that the receiver should wait after a missing packet to perform its reordering

functions (second received packet could be the missing one). A higher number can be

selected if the loss rate is low but packets are considerably disordered.

E. PACKET FORMATS AND THEIR TRANSMISSIONS

The packets exchanged between the transmitter and the receiver can be classified into

four categories: connection control packets, transmitter control packets, receiver control

packets and data packets.

Connection messages include connection request (ConnReq), connection

acknowledgment (Conn._Ack), connection confirmation (Conn_Conf), and disconnect

(Disc) messages, and they are used for connection management purposes (connection

establishment and termination). These packets do not carry any formation related to data

transfer so they can have appropriate formats much like the formats used in current

protocols. In what follows, calculation of the transmission periods and formats of the

control packets, and data packet formats are explained.

20

k.

1. Transmitter and Receiver Control Packets

Control packets have two purposes: First, they are used for periodic transmission

of complete state information of the communicating entities, secondly, the communicating

entities get informed of each other's existence through the reception of control packets even

when the data transfer ceases for a while.

a. Control Packet Transmission Periods

In both the transmitter and the receiver, control packet transmission periods,

Tin, are calculated by the formula Tin = max (RTD/kou, IPT), where RTD is the

estimated round trip delay for the logical connection, the constant kou is typically a power

of 2, such as 32, and IPT is the average time between two data packet transmissions. Tin is

initially set to a value calculated by this formula but if no data packets are transmitted (in

the transmitter) or received (in the receiver) since the transmission (or reception) of the last

control packet, then it is doubled up to the limit max (RTD Im, IPT) where m is another

constant (e.g. 8). Upon the transmission (or reception) of the next data packet, the inter-

transmission- time of control packets are decreased back to Tin again.

For example, if RTD is 60 ms, including the propagation delay and

processing time in the receiver, and kou is chosen to be 32, then a control packet will be

sent every Ti. = 1.875ms, provided that this value is larger than IPT. If the connection

remains inactive for one Tin period, then this interval is successively increased to 3.75 ms,

7.5 ms and so on, up to the limit given by max (RTD/m,IPT). If the data packet

transmission (or reception) interval IPT suddenly jumps to, say 9 ms, transmitting a control

packet sooner than every 9 ms becomes redundant, since more control packets than data

packets will be transmitted, and the control packets will mostly carry the same information.

Therefore, in this case Tin is set equal to IPT, keeping the control packet transmission in

proportion with data packet transmission (or reception) rate. As soon as the connection

21

becomes active again, Tin is decreased back to 1.875 ms. As it will be explained later, all

this is done through the use of variables. The actual clock period is not changed.

In this formula, the constant kou is the maximum number of receiver control

packets that the transmitter should expect to receive before the acknowledgment of a block.

This can be explained as follows: According to the formula, if the average time between

two data packet transmissions (IPT) is less than RTD /kou (meaning that the data packet

transfer rate is high), then a control packet will be transmitted every RTD /kou seconds,

otherwise control packet transmission interval will be equal to data packet transmission

interval. Therefore, if Tin is equal to RTD /kou then the maximum number of receiver

control packets that the transmitter should expect to receive before a block is acknowledged

after its transmission is kou. On the other hand, the average time between two data packet

transmissions (IPT) increases as data packet transmission rate decreases. If it finally

becomes greater than RTD/kou, then Tin becomes equal to IPT and the control packet

transmission interval increases. Control packet transmission interval also increases when

Tin is doubled. Hence, the number of receiver control packets that the transmitter can

receive before the acknowledgment of a block becomes less than kou. In a later section, it

will be shown how this idea is used in the protocol for retransmission purposes.

Having explained the calculation of Tin, some comments are in order:

* The event clock-tick: The value of Tin calculated with this formula also

determines the period of an event called "clock-tick" which is a periodic event occurring at

Tin second intervals. This is the timing mechanism of the protocol. Its occurrence initiates

an evaluation of the internal state variables to determine whether some action should be

taken such as transmission of a control packet or retransmission of a connection message.

- The protocol does not specify the details of how Tin is changed dynamically.

This, in fact, is an implementation detail and beyond the scope of this thesis. Here, it will

suffice to note that the protocol allows Tin to be changed dynamically. To do this, (i) data

22

packet transmission intervals, and (ii) round trip delay times should be monitored and new

values of Tin should be calculated by using the formula Tin = max (RTD /kou, IPT).

This operation provides better RTD values than the first estimation to adjust the

retransmission times according to the changes in RTD. However it is an optional operation

and if it is not done, the retransmission timeout values will not be terribly off, since the

protocol has the ability to adjust itself automatically with respect to the changes in RTD.

b. Control Packet Formats

Receiver control packets (Rjstate) contain the state information of the

receiver. Figure 3 shows the format of the receiver control packets2:

LCI I Type =0 1Seq # k LW I bkfferavailableI LOB I Error check

Figure 3: Receiver control packet format

LCI is the logical connection identifier, which is a unique sequence number

across all the logical links which the host computer is engaged in. The type field identifies

the type of the packet and contains 0, 1 or 2 for receiver control packets, transmitter control

packets and data packets respectively. Seq # field contains the sequence number of the

packet which differs from the sequence number of the transmitter control packets or the

data packets. The next four fields contain the values of the variables k, LTr,

bufferavailable and LOB in the receiver just prior to the transmission of the packet. The

variable k is the interval, between two control packet transmissions of receiver in units of

2 As shown in (NETR90] and in [MCAR92], the control and data packets formats do not contain an

address field. The same packet formats will also be used in the explanations in this thesis, and it will be
assumed that a convenient address field can be added to the packet formats in any implementation of the

protool.

23

Tin, LWr is a block sequence number such that all the blocks with sequence numbers less

than this have been correctly received and acknowledged, buffer available is buffer space

available at the receiver in units of blocks, and LOB is a bit map representing the

outstanding blocks between LWr and (LWr + L - 1). The first bit of LOB corresponds to

LWr and is always set to 0. The other bits are set to I if the corresponding blocks have been

received correctly, otherwise they are set to 0. LWr and LOB fields are used together to

acknowledge the blocks received correctly. The last field contains an error detection code

such as a 16-bit standard CRC (cyclic redundancy code).

Transmitter control packets (Tstate) contain the state information of the

transmitter. The packet format is shown in Figure 4:

La IType =1I Seq # Ik IUWI No. of blocks queued IErwor check

Figure 4: Transmitter control packet format

- The first field is La. The second field, the type field, contains 1 to indicate

that this packet contains the transmitter's state. Seq # is the sequence number of the packet.

The next two fields contain the values of the variables k and UWt of the transmitter just

prior to the transmission of the packet. Similar to receiver control packets, k is the interval

between two control packet transmissions of the transmitter in units of Tin, UWt is the

maximum sequence number of the block below which every block has been transmitted

(but not necessarily acknowledged). As explained in [NETR90], the queue length can be

used for a variety of purposes, such as congestion control within the network, to decide

whether the receiver should accept another connection, etc. It can also be used when the

transmitter does not have enough packets to complete a block. In such a case the transmitter

sends a partial block and the receiver does not classify this as an outstanding block. The last

field is the error check field.

24

2. Data Packet Formats

The format of a data packet is shown in Figure 5. The purpose of the first three

fields is the same as the transmitter and receiver control packets.

LCI I Type =2 Seq#I Data [Erorcheck

Figure 5: Data packet format

Data packet sequence numbers extend across the lifetime of the connection. The

sequence number of a packet contains p + q number of bits in the Seq # field. The first p

bits give the sequence number of the block which contains the packet and the next q bits

give the packet number in the block. Therefore, a block consists of 2q packets and the

message can have 2P blocks.

The length of the data packets are constant throughout the connection, which is

determined during the connection establishment phase. If a message does not fit into an

integral number of packets then, depending on the implementation, the space in the last

packet can be padded with null characters. This is intended to simplify the packet

processing in the receiver.

F. COMMUNICATION STRUCTURES

1. Buffers

The original protocol described in [NETR90] requires each logical connection to

have a pre-negotiated buffer at the receiver. The buffering scheme in the transmitter was

not defined to provide the abstraction. In [MCAR92], the buffers in both the transmitter and

the receiver were explicitly defined and included in the SCM specification. To keep the

abstract protocol definition given in this chapter close to the original protocol, the

specification details and modifications required for analysis and simulation, which include

25

the buffer structures, will not be presented here. Explanation of these modifications will be

left to Chapter V.

The buffer in the receiver is used as a place to temporarily hold the data packets

until they are retrieved by the receiving host. Another function of this buffer is a to reorder

the data packets that arrive out of sequence. Since it is guaranteed that the transmitter will

never send more than one window size of data packets, this buffer can be just big enough

to hold all the packets in the greatest window or larger. In other words, the size of the buffer

at the receiver should be at least (RTD x negotiated peak bandwidth) -bits.

2. RECEIVE and AREC

RECEIVE and AREC are tables maintained at the receiver and are updated as new

packets arrive from the transmitter. RECEIVE maintains information about received

packets. RECEIVE(i) is set equal to 1 (0) if the ith data packet is received correctly

(incorrectly). AREC maintains information about received blocks. AREC(j) is set equal to

1 (0) if the if all packets constituting the ith block have (have not) been correctly received.

The use of these tables provides detection of duplicate packets whose block

sequence numbers are greater than LWr, and also determining whether or not a whole block

has been received for acknowledgment purposes.

3. LUP Table

LUP table is the structure through which error recovery is performed. It is

maintained in the transmitter, and used only in mode 2. The size of LUP table is equal to

the number of blocks in the largest window size. Each element of this table has three fields:

SEQ, COUNT and ACK. After the transmission of a whole block of packets is completed,

an entry is made into the table element whose index is calculated from the block sequence

number. The block sequence number is copied into SEQ field, ACK bit is set to zero, and

26

the COUNT field is set to (RTD /Tin) + cons where cons is a constant (e.g. 2). The reason

for adding cons is to make the time-out period slightly larger than the round-trip delay

therefore the block will not have to be retransmitted if the acknowledgment arrives a little

late.

When a block is acknowledged, its ACK bit is set to 1. In effect, this action

removes the block entry from the table and the table entry need not be cleared. After every

reception of a receiver control packet, the COUNT fields of unacknowledged blocks are

decremented by k, which is the interval between two control packet transmissions of the

receiver, expressed in units of Tin. This number is obtained from the k field of the receiver

control packet. A block is scheduled for retransmission only if it is not acknowledged and

its COUNT field reaches zero. This error recovery scheme has the following useful

properties:

- As it was mentioned before, this error recovery scheme eliminates the need for

explicit retransmission timers through the use of counters and periodic transmission of the

control packets.

* As the load on the receiver increases, or if the network is heavily loaded, the

effective round trip delay through the system increases, increasing the time interval

between the reception of successive receiver control packets at the transmitter. As a

consequence of this, the transmitter decrements the count fields of the LUP table entries

less frequently and the retransmission timeout increases automatically. This is an important

property in that it eliminates the need for recalculation of RTD in order to adjust the

retransmission timeout values.

- For low-activity connections, control packet transmission intervals are increased

by doubling the value of k. However, since the counter of the LUP table is decreased by k,

the effective timeout period remains the same. This property prevents unnecessary control

packet transmissions.

27

* If the receiver is extremely busy and the number of packets waiting to be

processed increases, in order to prevent "retransmission avalanche" a further enhancement

can be made by increasing the receiver control packet transmission intervals while keeping

the k variable constant [NETR90] (The specification presented in this thesis does not have

this property.)

28

IV. THE SPECIFICATION MODEL:
SYSTEMS OF COMMUNICATING MACHINES (SCM)

In. the previous chapters, the motivation issues that led to the development of the SNR

protocol are discussed and the basic structures and functions of the SNR protocol are

presented. Before continuing on with the formal specification of the protocol, the particular

model used to formally specify and analyze the protocol will be described in this chapter.

The specification model is called systems of communicating machines (SCM) and the

analysis method associated with it is called system state analysis. A more detailed

description appears in [LUND88] and [LUND91].

There are various methods for protocol specification and verification, each of which

has its own advantages and disadvantages. The following references present discussions on

other different types of protocol specification methods: CFSM [VUON83], CSP

(Communicating Sequential Processes) [HOAR78], LOTOS [BRIN85I, Ada [CAST851,

Estelle [BUDK87], [DIAZ89], [LINN85].

A. DEFINITION OF THE SCM MODEL

The SCM model is a formal model used for the specification of the communication

protocols. It is derived from the communicating finite state machines (CFSM) model and

attempts to reduce its disadvantages. To reduce the number of states in each machine, local

variables are added, and instead of the implicit queues, shared variables are used for

communication between processes. A channel may be modeled as a process explicitly,

whenever appropriate. This model tries to stay close to the CFSM model, keeping as much

of its simplicity as possible, however, it is also inclined toward the programming language

models as can be seen from the following definition of the model:

A system of communicating machines is an ordered pair C=(M,V), where

29

is a finite set of machines, and

V=(vl,v2 ,....vk)

is a finite set of shared variables, with two designated subsets Ri and Wi specified for each

machine mi. The subset Ri of V is called the set of read access variables for machine mi, and

the subset Wi the set of write access variables for mi.

Each machine mi , M is defined by a tuple (Si, so, Li, Ni, uj), where

(1) Si is a finite set of states;

(2) so e Si is a designated state called the initial state of mi;

(3) Li is a finite set of local variables;

(4) Ni is a finite set of names, each of which is associated with a unique pair (p, a),

where p is a predicate on the variables of Li u Ri and a is an action on the variables of

Li u Ri u Wi. Specifically, an action is a partial function a:L, x R i -- Li x Wi from the

values contained in the local variables and read access variables to the values of the local

variables and write access variables.

(5) ri: Si x Ni -+ Si is a transition function, which is a partial function from the states

and names of mi to the states of mi.

Machines model the entities, which in a protocol system are processes and channels.

The shared variables are the means of communication between the machines. Intuitively,

Ri and W1 are the subsets of V to which mi has read and write access, respectively. A

machine is allowed to make a transition from one state to another when the predicate

associated with that nan* is executed. The action changes the values of local and/or shared

variables, thus allowing other predicates to become true.

Let x(s1, n) = s2 be a transition which is defined on machine mi. Transition c is enabled

if the enabling predicate p, associated with name n, is true. Transition r may be executed

whenever mi is in state s, and the predicate p is true (enabled). The execution of r is an

30

atomic action, in which both the state change and the action a associated with n occur

simultaneously.

The set Li of local variables specifies a name and a range for each. The range must be

a finite or countable set of values.

It is convenient to produce a table called predicate-action table (PAT) which lists each

transition name and the predicate and action associated with that transition. This table,

together with the FSM diagrams and the variables, make up the formal specification.

B. SYSTEM STATE ANALYSIS

The analysis method associated with the SCM model is called the system state

analysis. This method is analogous to the reachability analysis of the CFSM model.

However, it tries to address the two well known drawbacks of the reachability analysis: the

undecidability of the finiteness of the reachability graph due to unbounded queues, and the

state explosion problem for nontrivial protocols which make the analysis impractical.

These problems are not trivial problems and a considerable amount of research is done to

cope with them and to develop improved methods.

1. Definitions

Before getting into how the system state analysis is done, it is necessary to make

some further definitions:

A system state tuple is a tuple of all machine states. That is, if (M, V) is a system

of n communicating machines, and si for I <i<n, is a state of machine mi, then the n-tuple

(sp, s2,...,sn) is the system state tuple of (M, V).

A system state is a system state tuple, plus the outgoing transitions which are

enabled. That is, two system states are equivalent if the corresponding machines are in the

same states with the same outgoing transitions enabled.

The initial system state is the system state such that every machine is in its initial

state, and the outgoing transitions are the same as in the initial global state.

31

The global state of a system contains the system state, plus the values of all

variables, both local and shared. It may be written as a larger tuple, combining the system

state with the values of the variables. The initial global state is the initial system state, with

the additional requirement that all variables have their initial values. A global state

corresponds to a system state if the corresponding variables have the same value and the

corresponding machines have the same state with the same outgoing transitions enabled.

That is, a global state consists of a tuple of machine states, plus the values of all variables.

A system state with the same tuple of machine states and the same enabled outgoing

transitions is the corresponding system state.

2. Analysis Algorithm

The system state analysis consists of generating all the system states reachable

from the initial system state. This is done by constructing a graph whose nodes are the

reachable system states, and whose arcs indicate the transitions leading from one system

state to another. Given the protocol specification, which includes the FSMs and the

predicate action table, the graph is constructed as follows:

1. Generate the starting node. This node is just the initial system state where all

the machines are in their initial states, and all the variables have their initial values.

2. Select an unexplored node (parent'). From the current system state tuple and

the variable values, determine all the enabled outgoing transitions according to the PAT.

For each of these transitions, determine the system state which results from its execution

(children2).

3. For each child, examine the rest of the graph whether an equivalent system state

has already been generated (two system states are equivalent if every machine is in the

same state, and the same outgoing transitions are enabled.) If there is an equivalent system

1 A node which is being explored is called a parent.
2 A new node which is generated from the explored node is called a child.

32

state, then draw an arc from the current state to it, labeling the arc with the transition name.

Otherwise add the new system state to the graph, draw an arc from the current system state

to it, and label the arc with the name of the transition.

4. Repeat step 2 and 3 until no more new states are generated.

3. Comparison with the Global Analysis

It is also possible to make a global analysis of the SCM specifications. A global

analysis is done exactly the same way as a reachability analysis: all the reachable global

states are generated and two global states are considered to be equivalent only if al the

machines are in the same state and all the variable values are the same. For the global

analysis, it is not necessary to compare the outgoing transitions of the equivalent states,

since if the machines are in the same states and the variable values are the same, then the

outgoing transitions will be the same.

The third step of the algorithm described above is the reason why the system state

analysis generates less states than a global analysis. The reason is that if the equivalent

system state of a new child is found, then the child is deleted, and hence, none of the

dependent system states, which would have been generated if the child had been explored,

are generated. This is also the property of the system state analysis which makes it

eventually terminate even if the number of global states are infinite.

On the other hand, note that if the values of all variables are restricted to some

finite range, then the model can theoretically be reduced to a simple finite state machine.

Otherwise, an infinite number of global states are possible. However, even if the number

of global states is infinite, the number of system states is finite, because of the finiteness of

each machine. This may allow a reachability analysis on the system states, when a

reachability analysis on the global states in infinite. Even when the values of all variables

are of a finite range, the number of global states in the equivalent FSM system may be so

large as to be intractable. This model reduces these difficulties for some specific protocols.

33

The SCM model and the system state analysis was applied to a number of

common protocols including the token ring protocol, CSMA/CD protocol, token bus

protocol, FDDI protocol and a general data transfer protocol with variable window size

(e.g., HDLC). In Chapter V of this thesis, the specification of the SNR protocol with the

SCM model will be reproduced and refined. In Chapter VI, the results of applying the

system state analysis to the protocol will be presented.

34

V. FORMAL SPECIFICATION

The basic ideas and building blocks of the SNR transport protocol were presented in

Chapter Ill. In this chapter, a formal specification of the SNR transport protocol will be

made by using the SCM model, which was introduced in Chapter IV. This model consists

of Finite State Machine (FSM) specifications and a Predicate-Action Table (PAT)

containing the enabling predicate and action for each transition. In order to apply the

system state analysis and to simulate the protocol, the basic concepts introduced in Chapter

Ill had to be improved and the degree of abstraction had to be reduced, i.e. the data

structures and the operations on these structures had to be described, too.

The first section of this chapter defines these improved communication structures

which are more detailed versions of the communication structures given in [MCAR92].

Next, the FSMs are described in detail and the predicate-action tables (PAT) of each

machine in the protocol are given. Then, in the subsequent section, the subroutines which

are used in the predicate-action table are described.

A. COMMUNICATION STRUCTURES FOR THE SPECIFICATION

To illustrate of discussions in this chapter, the machine organization diagram

presented in Chapter JIl is extended to include some of the communication structures as

well, and is depicted in Figure 6. This figure also illustrates the global shared variables in

the transmitter and the receiver (local variables are not shown for clarity).

1. Communication Channels

As it was stated in Chapter III, this protocol requires a full duplex link between

two communicating entities. The logical links connecting the two entities are modeled as

queues which are called "communication channels" in the specification of the protocol.

35

OUTBUF R OINUF

tail adam ofbitsmt to teeceive

assumesthtt h k et d ae dr t u y ei recinerte queu

T4 TCHAV R

Tigur is thcie chgannelifrom t n smitr the Mosret istherfic

chneliThich thdeo tralnksmte dumpes ronnteaction requests, connectua ion cfratrion

messages, dathat packets am c ontrol packets and disnsectessages.

a . T3_3Dsc

sen (Sendi the anlfo h ransmitter (Sen tr e reieier . This is thef

nbfess g s contra packets) r n m te control packets) and di c n e t e s g s

LUPUN RE36

A"

The machines connected to T CHAN can be seen in Figure 6. On the

transmitter side, machine 12 enqueues all the messages related to connection management

operations, machine Ti enqueues data packets, and machine T3 enqueues transmitter

control packets into TCHAN. On the receiver side, machine R2 dequeues connection

management messages and transmitter control packets, and machine RI dequeues data

packets.

b. RCHAN

RCHAN is the channel from the receiver to the transmitter. This channel

carries the connection acknowledgment messages and receiver control packets sent by the

receiver. On the receiver side, machine R2 enqueues the connection acknowledgment

messages and machine R3 enqueues the receiver control packets into this channel. On the

transmitter side, both kinds of messages are dequeued by machine T2.

2. Buffers

Figure 6 shows the buffers used in the transmitter and the receiver. Here, the

buffers and the pointers used with the buffers will be explained. It will be assumed that the

data stream is already divided into packets by the host, and that data can be moved around

in the form of packets rather than a stream of bits (or characters). Furthermore, it will be

assumed that each buffer location holds a data packet (without the header parts).

The use of the buffers were left more abstract in the protocol descriptions given

in [NETR90] and [MCAR92]. However, in order to apply the system state analysis and to

simulate the protocol, the structure and the use of the buffers had to be described, too.

a. OUTBUF

OUTBUF is a buffer space into which machine T4 deposits the data packets

it gets from the host for transmission. Machine TI extracts the packets from here, adds the

header parts and transmits them to the receiver.

37

A schematic illustration of OUTBUF is shown in Figure 7. As it can be seen

in the figure, this buffer has two parts: Retransmission buffer and transmission buffer. The

retransmission buffer is located before the transmission buffer and it holds the packets that

have been transmitted by machine TI but not acknowledged yet. The transmission buffer

holds the packets which have been buffered by machine T4 and waiting to be transmitted.

RETRAS- TMANS-TAL

EAcknowledged
Waiting to be
acknowledged

[3 Waiting to be
Strammitted

ffer buffer 3mpy

Figure 7: OUTBUF

These buffers are separated by three pointers called RETRANS, TRANS and

TAIL as explained below:

The pointer RETRANS holds the index of the buffer location just before the

first unacknowledged packet in the buffer and it indicates the beginning of the

retransmission buffer. RETRANS is incremented when the first packet in the retransmission

buffer is acknowledged.

TRANS holds the index of the buffer location just before the first packet in the

transmission buffer. It shows the beginning of the transmission buffer. TRANS is

incremented when the first packet in the transmission buffer is transmitted. Since the

retransmission buffer area extends from RETRANS to TRANS, incrementing TRANS puts

the packet in the retransmission buffer.

TAIL holds the index of the location just before the beginning of the empty

buffer spaces. It is incremented when a packet is put in the buffer to be transmitted.

38

Initially, when there is no data in either buffer, TAIL = TRANS = RETRANS.

The transmission buffer is empty when TRANS = TAIL, and the buffer is full when the

packets in both buffers fill all the available buffer spaces.

The purpose of dividing the OUTBUF into two parts is to avoid the

movement of data packets in the buffer, which is a costly operation. With the buffer scheme

explained here, the data packets which are enqueued at the end of the transmission buffer

remain in their places until they are acknowledged by the receiver. This scheme is also

suitable for circular buffer implementations.

b. INBUF

Each logical connection has its own pre-negotiated buffer in the receiver

called INBUF. This is the buffer place in the receiver to temporarily hold the data packets

until they are retrieved by the receiving host. Another function of this buffer is a to reorder

the data packets that arrive out of sequence. Received data packets are inserted into buffer

locations whose indexes are calculated from the sequence numbers. As it was pointed out

in Chapter IH, the size of INBUF should be at least (RTD x negotiated peak bandwidth)

bits in order to prevent it from overflowing. Figure 8 depicts the schematic diagram of

INBUF:

HEAD-

INBUF

Passed to the host

EWaiting to be
passed to the host

Q3 Empty (not received)

RECEIVE

0001111o011 ! 10| l0 oo1 lo lOoo 0101 010100 0

Figure 8: INBUF and RECEIVE

39

As it can be seen in this figure, associated with INBUF is an index variable

HEAD, which is used for retrieval of packets in sequential order. This variable holds the

index of the buffer location which contains the first data packet which is not retrieved yet.

The RECEIVE array indicates if the packets are received and put in the buffer by machine

R1. Then the packets are removed from the buffer at the host's convenience by machine R4.

3. RECEIVE

This is an array of bits where each bit maps to a location of INBUF, therefore, the

size of RECEIVE is equal to the maximum number of data packets that INBUF can hold.

The purpose of this bit array is to indicate if any location of INBUF contains a data packet

or not as shown in Figure 8. A RECEIVE bit set to 1 means that there is data in the

corresponding INBUF location, hence RECEIVE(i) is set to 1 upon insertion of a data

packet into the ith location of INBUF. This scheme has three uses: First, it helps detection

of duplicate packets whose block sequence numbers are greater than LWr, secondly, it is

used in determining whether or not a whole block has been received for acknowledgment

purposes and finally it indicates to machine R4 whether or not there is a data packet in the

buffer ready to be retrieved.

After machine R4 passes a block of packets to the host, it sets the corresponding

RECEIVE bits to 0 without clearing the buffer itself. With this scheme, the buffer allocation

and deallocation for the packets is done in a very simple way by the protocol and no

operating system support is needed, except for the allocation of a buffer space for INBUF

in the memory.

4. AREC

AREC is another array of bits, whose size is equal to the number of blocks that can

be hold in INBUF. Each bit in this array corresponds to a block size of packets in INBUF

starting from the first location, so that bit 1 of AREC corresponds to the first block of

packets, bit 2 corresponds to the second block of packets and so on. When all the packets

40

in a block have been received, the AREC bit for this block is set to 1. This array is used to

acknowledge the blocks together with LWr and LOB array.

These structures are used as follows in order to acknowledge the data packets

received correctly: Upon reception of a data packet by the receiver, a check is done for

duplicate detection. The packet is a duplicate if the block number that contains the packet

is less than LWr, or if the RECEIVE bit corresponding to the packet sequence number is 1.

In this case, the packet is discarded. Otherwise, it is inserted into the corresponding INBUF

location and the RECEIVE bit for this location is set to 1. If this packet completes the

reception of a whole block of packets, then either LWr is increased until it is equal to the

sequence number of the first incomplete block (if the completed block is LWr), or a bit

corresponding to that block in AREC is set to I (if the completed block is different than

LWr). Thereafter, AREC is copied into LOB array for transmission to the transmitter in a

receiver control packet to acknowledge the successfully received blocks.

B. FINITE STATE MACHINE DESCRIPTIONS

The machine organization and a general overview of the protocol is given in Chapter

IMl. Here, the operation of the machines will be explained in detail and it will be shown how

the coordination is achieved though the use of shared variables.

1. Machine TI

Machine TI is responsible for transmission of new data packets and

retransmission of unacknowledged packets whenever required. Figure 9 shows the state

diagram of machine TI and the relevant part of the Predicate Action Table is in TABLE 2.

Machine TI starts its operation when the global variableT_active is set to TRUE

by machine T2 upon successful connection establishment.

In mode 0, TI transmits data packets as long as the variable Tactive remains

TRUE and there is data in the OUTBUF to transmit, without being concerned with flow

41

fns 0

start

retansmit 1 tanmit -blk

blk
comipleted

2
no_flow

flow-chk

no-eff err-chk

Figure 9: Ti State Diagram

TABLE 2: PREDICATE ACTION TABLE FOR MACHINE Ti

tatT-active=T null
f h IT..active=F Inufl

ftranmit IT..active=-TA Packet seq:=(Expired(LUP)-l)*blocký_size+retrans-count
mode= 2 A eXpired(LUP) /=0 1Packetdata=OUTBUF(Packet seq mod OUTBUF'length)

Enqueue(PacketLCHAN);
sent: T;
inc (re-transw.count);
if retransL_count > block_size then

retrans~count:=l;
LUP((Expired(LUP)-1) mod L+1).count:=inmitial value;

endif-,

tanMmitbjk T~actiVC=T A retrans,_count: 1;
not (Empty(OUTBUF)) A Dequeue(acket.dsta,OUMUF;
transcount <-- blocký_size A Packet~seq:=UW, * block_size + trans~jsount;
(mode=0 v ((NOU < L A Enqueue(aketT..HAN);

buffer -NOU)O)A sent:=T;
(mode=l v Expired(LUP)=O))) inc (transscount);

Ikccompleted trans~count > blockjsize transco~unt := 1;
inc (UWt);

ojilow mode = 0 null
ow~chk niode= v mode =2 mic (NOU):.

-r mode =1I null;

.. cbk Imode = 2 Insert (UWV, LUP);

42

control or error recovery. Every time the transmission of a block is completed, it increments

the variable UWt.

In mode 1, before transmitting a new block, the current value of NOU is compared

with the maximum window size L and the last reported value of buffer available from the

receiver control packet to make sure that the maximum window size will not be exceeded

and that the receiver has enough buffer space to receive the block. The block is transmitted

if NO U < L and bufferavailable - NOU > 0. Upon transmission of a complete block,

NOU is incremented. This variable is decremented by machine T2 by the number of

acknowledged blocks when new state information becomes available from the receiver,

thus generating availability for the new blocks to be transmitted.

In mode 2, retransmissions are done prior to transmission of any new packets. If

the count field of any block in the LUP table reaches 0, then TI stops transmitting new

packets and retransmits all the packets in the expired block. After it retransmits the whole

block, it reinitializes the count field of the block in the LUP table and continues transmitting

new packets, flow control permitting. Every time the transmission of a new block is

completed, an entry is made into the LUP table, in addition to incrementing UWt and NOU.

Flow control mechanism in mode 2 is exactly the same mechanism explained in the

previous paragraph for mode 1.

Upon either transmission or retransmission of a data packet, the global variable

sent is set to TRUE. This indicates to machine T3 that data has been transmitted and that

control packet transmission frequency may need to be readjusted. Each time machine T3

sends a control packet, it resets the value of sent to FALSE. This toggling mechanism

adjusts the control packet transmission frequency based on the activity of the current

logical connection.

43

2. Machine T2

Machine T2 has two responsibilities: (i) connection establishment and

termination, (it) reception and processing of receiver control packets. The state diagram is

presented in Figure 10 and the predicate action table is given in TABLE 3.

To start the connection establishment process, 72 waits for the variable Transmit

to be set to TRUE by machine T4. Connection establishment process follows the standard

three-way handshake procedure, which is outlined previously (see Connection

management on page 17).

The event clocktick is used as a timing mechanism to wait for the arrival of

Connack message from the receiver and to send successive requests. After transmission

of the first Conn_req message, the local variable delay is incremented every time a

clocktick occurs, until it becomes equal to reset, and then another Connreq is transmitted.

Therefore, reset x Tin gives the waiting time for the connection acknowledgment message

g re0 ept

2

-)_

Figue 10T2 SateDiga

44

TABLE 3: PREDICATE ACTION TABLE FOR MACHINE T2

equest Transmit=T A Accept=T A Fail=F Enqueue (Corm Req, TCHAN);
pt R.CHAN(front) = CormAck A T-active:= T;

Acceptable (RCHAN(front)) Enqueue (Conn_Conf, TCHAN);

_ Dequeue (RSCHAN);

naccept RCHAN(front) = Com_ Ack A Accept.=F;
not (Acceptable (RCHAN(front))) Dequeue (RCHAN);

clock Empty (RCHAN) A clock-tick inc (delay);
Lk delay < reset null
mieout delay = reset inc (attempts); delay:=O;
etry attempts < max-attempts Enqueue (ConnReq, TCHAN)
uit attempts = max-attempts Fail := T

finish Transmit = F A Empty (OUTBUF) A Tactive:=F;
Disconnect = F A Enqueue (Disc, TCHAN);
((mode= 2 A Empty (LUP)) v mode = I v

mode = 0)
abort Disconnect = T Tactive:=F; Transmit:=F;
,cv_state not (Empty (R.CHAN)) A Disconnect=F null
Jiscard R_CHAN(front).seq <= high v Dequeue(RCHAN);

RCHAN(front)=Conn_Ack

update RCHAN(front).seq > high scount:--; high:=R.CHAN(front).seq;

no_flow mode = 0 Dequeue(RCHAN);

fow.chk mode = I v mode = 2 Balance (R.CHAN(fxont).LOB, HOLD,
R_CHAN(front).LWV, LWt, NOU);

HOLD := RCHAN(front).LOB;
LW, := R CHAN(front).LWr,
buffer := RCHAN(front).bufferavailable;
Update..outbuf (OUTBUF, LW);

o..er _ mode = I Dequeue (R-CHAN);

S mode = 2 Update LUP (LUP, HOLD, LWt, RCHAN(front).k);
Dequeue (RCHAN);

to be received. Every time a connection request is sent, the variable attempts is

incremented. If this variable becomes equal to maxattempts, which is the maximum

number of trials to establish a connection, the transmitter aborts connection establishment

process and reports to the host that the attempts have failed.

Upon successful connection establishment, machine 72 sets the variable Tactive

TRUE and all other transmitter machines start their execution in parallel. When all the data

have been transmitted, machine T4 sets Transmit to FALSE, signalling machine T2 to

45

terminate the connection. Machine T2 waits until the LUP table is cleared (in mode 2 only),

transmits a Disc mesage and sets Tactive to FALSE, upon which all the machines make

their final transitions to reach their initial states.

The main job of machine T2 during the data transfer is reception and processing

of receiver control packets that are in increasing order. Out of sequence control packets as

well as any duplicate Conndck packets which may still remain in the RCHAN from

connection establishment phase are discarded. The information in the receiver control

packet is used to update the variables depending on the mode of operation as follows:

• The variable scount is set to 0 (for the use of this variable, see the explanation

for machine T3).

- Procedure Balance is called to increment NOU by the number of acknowledged

blocks in the receiver control packet (in modes 1 and 2).

* LWr is copied into LW,, LOB bit field is copied into HOLD, and buffer

availability information is copied into bufferyavailable (in modes 1 and 2).

- Data packets in the acknowledged blocks are removed from the OUTBUF by the

procedure UpdateOUTBUF (in modes 1 and 2).

• The procedure UpdateLUP is executed to remove the entries for the

acknowledged blocks from the LUP table and decrement the count fields of all the

unacknowledged blocks by k, which is obtained from the last receiver control packet. If

machines TI and T2 are trying to use LUP table, T2 is given priority in order to prevent

unnecessary retransmissions.

3. Machine T3

Machine T3 has two main responsibilities in the protocol: periodic transmission

of transmitter control packets and initialization of abnormal connection termination if no

receiver control packets are received for a predetermined amount of time. The state diagram

is presented in Figure 11 and the predicate action table is in TABLE 4.

46

Machine T3 starts its execution when Tactive is set to true by machine T2 and

executes its function each time a clock_tick occurs. When clocktick occurs, T3 checks the

value of the variable sent, which is set to TRUE by machine TI after every data packet

transmission. If sent is TRUE, then T3 transmits a control packet and changes the value of

start

dela clock

Figure 11:T3 State Diagram

TABLE 4 : PREDICATE ACTION TABLE FOR MACHINE T13

Itart Tueueiv1'T nule, T n.CnAnn

•o daa sen=F mc(couta

k :n (2*k, klim)

•aasent = T Enqueue (T_stale, T_.CHAN);

•o~di• •ount Lirasent :-F; count := 0
Disconnect T

_active null

Clock liack -tve = T inc(oull

null

imeut out =k scun Li Fqum (_*" 7_C47)

sent to FALSE. Conversely, if the value of sent is FALSE, which indicates that machine TI

has not transmitted any data packets since the transmission of the last control packet, then

the variable k is recalculated using the formula k = max (2 x kkLim) and control packet

transmission is delayed for k x Ti, seconds. To accomplish the delay, a local variable count

is incremented at every clock-tick (which occurs every Tin seconds) until it becomes equal

to k. If machine TI transmits data during the meantime, then machine T3 stops waiting,

transmits a control packet immediately and resets the variables k to 1 and count to 0. This

mechanism keeps the control packet transmission rate in proportion with data packet

transmission rate.

If the receiver remains silent for a for a predetermined amount of time, which is

most likely to happen when a network failure occurs, machine T3 initiates the connection

termination. For this purpose, another counter variable scount is used. T3 increments

scount every time it transmits a control packet, and T2 sets this variable to 0 every time it

receives a receiver control packet. If scount ever reaches the predetermined value Lim, then

machine '"3 sends a Disc message and sets the variable Disconnect to TRUE. Then,

machine T2, which monitors this variable continuously, sets the variables T-active and

Transmit to FALSE, causing all other machines to terminate immediately. In this case,

machine T4 notifies host of the abnormal termination.

4. Machine T4

Being the host interface, Machine T4 performs the necessary communication

between the transmitting host and the other machines. The state diagram is depicted in

Figure 12 and the predicate action table is given in TABLE 5.

Upon receiving a transmission signal from the host, T4 sets the variable Transmit

to TRUE indicating to machine T2 that a connection should be established. At this point,

T4 starts monitoring the variables T active, Fail and Accept. A TRUE state of Fail shows

that the attempts of machine T2 to establish a connection have failed and it could not get a

48

3 1 unaccept

Figure 12: T4 State Diagram

TABLE 5: PREDICATE ACTION TABLE FOR MACHINE T4

signal transmission signal from the hostTransmit :f T

_ail _Fail = T Transmit:= F;
no1ty host of failure to connect,

naccept Acep = notify host of unacceptable connection
Cr.ackfrom tive = T toll

te not (4aet (OUtevra) e not(tot) A Enqueve (dsta streamefrom the tos, OUTBUF)
T-W~tive=T

nnh ot e hTaetive a c T Transmit := F
cofirm T-active = F not16 host of completion

disc l_active = F 2otb host of disconnea

Conn-ack from the receiver, and a FALSE state of Accept shows that machine 72 has

received an acknowledgment message whose parameters were unacceptable. In both cases,

T4 sets the variable Transmit to FALSE and gives an appropriate message to the host. If,

none of these happen and machine 712 establishes the connection successfully, it sets the

variable Tactive to TRUE. With this signal, machine T4 starts depositing the data to be

transmitted into the buffer OUTBUF.

As long as the connection is active, T4 writes the data into the buffer and T1

transmits them. When the end of transmission signal is received from the host, T4 sets

49

Transmit to FALSE and waits for T active to turn FALSE. Connection is not broken until

all the data in the buffer is transmitted and acknowledged by the receiver, whereupon T2

sets T active to FALSE and T4 notifies host of the completion. If the connection gets lost

during the data transfer phase, machine T2 sets Tactive to FALSE terminating all other

machines. Then, machine T4 notifies host of the disconnect and it terminates also.

5. Machine R1

Machine RI removes the received the data packets from TCHAN and either

inserts them into the buffer INBUF or passes them to the host directly, depending on the

mode of operation. The state diagram for machine RI is depicted in Figure 13 and the

predicate action table is given in TABLE 6.

Machine R1 starts its operation when the global variable Ractive is set to TRUE

by machine R2 subsequent to successful connection establishment. In mode 0, R1 passes

the packets to the host directly without buffering and without performing any kind of error

or flow control operation.

In -modes 1 and 2, each time machine R1 receives a data packet, it calls the

procedure Order-insert, which inserts the packet into its allocated location in the buffer

unless the packet is a duplicate. If the packet is duplicate, then it is discarded. Otherwise,

afinish0

ive

no buf buffer
2

Figure 13: RI State Diagram

50

TABLE 6: PREDICATE ACTION TABLE FOR MACHINE R1

R_active=Tl
_inish _ R_active = F A Empty (IMBUF) null

TCHAN (front) = DATA
nobuf mode = 0 Pass TCHAN(front) to the host;

Dequeue (T SHAN)

buffer mode = 1 v mode =2 Order insert(TCHAN(front), INBUF, RECEIVE, LW,
duplicate);

if not duplicate then
received:= T;
Processpacket (T CHAN(front).seq, RECEIVE,

ARECbuffer-avail,LWUWLOBQ);
end if;
Dequeue (TCHAN);

the variable Received is set to TRUE and the procedure Processpacket is called to update

various variables. This procedure sets a bit in the RECEIVE array telling machine R4 that

the corresponding buffer location holds a data packet. If the packet completes a block, then

Processpacket decrements the variable buffer_avail, updates UWr, LWr, AREC and LOB

for acknowledgment of the block.

6. Machine R2

Machine R2 is the receiver counterpart of transmitter machine T2. First, it

establishes the connection with the transmitter and thereafter receives and processes the

transmitter control packets. The state diagram for machine R2 is depicted in Figure 13 and

the predicate action table is given in TABLE 7.

Machine R2 is activated upon reception of a Conn req message. It evaluates the

requested connection parameters and responds with a Connack message containing the

parameter values under which the receiver can operate. Upon reception of this massage, the

transmitter does its own evaluation and sends a Conn conf message, if it accepts the

connection with these parameters.

After R2 transmits the Conn-ack, three things can go wrong: (i) Conn-ack can get

lost, (it) Connconf can get lost, or (iii) the transmitter may not accept the connection. If

51

ack 0•

I clock

finish F disca~rd

Figure 14: R2 State Diagram

TABLE 7: PREDICATE ACTION TABLE FOR MACHINE R2

T _CHAN (front) = ComnReq Evaluate (Comi_req);
Dequne (T HAN);
Enqueue (Conmack, RCHAN);

_ l o c k _ c lo Cktc k A E m p ty (T _C H A N) in c (d e la y)

_ _ _ delay < reset Enqueue (Conrack, R.CHAN);

delay reset null
stat TCHAN(front) = Cona confv R-active:= T;

T ..CHAN(front) = 7 state v if T CHAN(front) = Co rm confthen
-T_CHAN(front) = Data Dequeue(TSHAN);

end if;
finish Disconnect = T v TCHAN(front)=Disc R_active := F;

update T_CHAN(front) = 7 state A scount:= 0;
T..CHAN(front).seq > high high:= T-CHAN(front).seq;

Dequeue (TrCHAN);
disad (T-CHAN(front) = Coma confv Dequene CTCHAN);

TCHAN(front) = Connmreq) v
(TCHAN(front) = T state A

TCHAN(front).seq <= high))

o .Lack T_CHAN(front) = Conm req Dequese T _CHAN);
Enqueue (Comn ack, R.CHAN)

Connack gets lost transmitter sends another Conn_req after it times out, and R2

retransmits the Connack message. Loss of Conn-conf is not a problem, since the

transmitter immediately starts transmitting the control packets and the data packets after

sending Conn conf. Therefore, the connection automatically becomes implicit with the

52

reception of any of these messages. On the other hand, if the transmitter does not accept the

parameters it aborts the connection and leaves the network. In this case, R2 waits for a

while and terminates when it times out. To accomplish the timeout, the variable delay is

incremented every time a clocktick occurs until it becomes equal to reset. Therefore, the

timeout value is reset x Tin seconds. Also, R2 retransmits the Connack message at every

clock tick.

If none of the events above happen and the connection can be established

successfully, R2 sets Ractive to true to indicate the beginning of data transfer phase to the

other machines. In data transfer phase, R2 receives the control packets from the transmitter

and processes them. It only accepts the packets with monotonically increasing sequence

numbers, discarding all the others. Every time R2 receives a control packet it sets the

variable scount to 0, as an indication to machine R3 that the control packets are being

received and the connection is still alive. This is exactly the same mechanism that the

transmitter uses.

Machine R2 terminates if the variable Disconnect is set to TRUE by machine R3

(abnormal ternination) or a Disc message is received from the transmitter. In either case,

R2 sets Ractive to FALSE to indicate the end of data transfer phase, and terminates.

7. Machine R3

The state diagram for machine R3 is shown in Figure 15 -and the predicate action

table is given in TABLE 8.

Machine R3 has exactly the same structure and function as the transmitter

machine T3: it transmits the receiver control packets periodically to the transmitter through

R_CHAN, and initiates an abnormal connection termination if no transmitter control

packets are received for a predetermined amount of time. The only difference from the PAT

of T3 is the use of the variables R active and received instead of T active and sent for the

same purpose.

53

Figure 15: R3starteiga

lock lock~ick A~achv=T iclckut

jlala3 noevc= data oun2

disc scount<Lim
redic i e F o n

54

8. Machine R4

Machine R4 provides the interface to the receiving host by passing the data in

INBUF to the host and notifying the host of any errors which may occur during the

reception of the data packets. The state diagram of machine R4 is depicted in Figure 16 and

the PAT is given in TABLE 9.

di••accept

to err
q

retrieve

Figure 16:R4 State Diagram

[..........
•t Ractive = T null;

finish Ractive = F ̂ Empty (INBUF) ^ null;
Disconnect --- F

• sc Disconnect = T notify host of disconnect
accept Disconnect = F ^ null:

not (Empty(INBUF)) ^
mode:=l v mode2 ^
signal from host

•oen" mode = l null;

wait Wait (INBUF, RECEIVE) = T null;

retrieve Wait (INBUF, RECEIVE) = F Retrieve..model (INBUF, RECEIVE, AREC,
bufferavail, LWr, U-Wr, LOB);

.,rrchk mode = 2 PRetreive..mode2 (INBUF, RECEIVE, bufferavail);

55

R4 starts its operation whenR_active becomes TRUE upon successful connection

establishment. The functions performed by this machine show little difference in different

operation modes.

In mode 0, machine R4 only performs the notification duties and does not pass

data to the host because in this mode, machine R1 does this function.

In mode 1 and 2, in addition to performing the notification duties, R4 retrieves

data from INBUF and passes to the host in sequential order as long as there is data in the

buffer. This is done by the procedures Retrieve model and Retrieve mode2 depending

on the operation mode. Both procedures check the RECEIVE array to determine if there is

data in the buffer location from which the next data packet is to be retrieved.

If the buffer location is empty, then machine R4 waits until the data becomes

available through the error recovery procedure. However, since error recovery is not done

in mode 1, in this mode R4 waits until certain number of packets appear in the buffer after

the missing one (e.g. 2), and then skips the missing packet. Procedure Retrieve model

also updates the structures, if the reception of a packet completes an entire block. Both

procedures increment bufferavail as the buffer space is created for new blocks.

C. SUBROUTINES

The subroutines are described in the form of algorithms using ADA's syntax to avoid

getting too much into implementation details. It will be assumed that ring buffers are

utilized in the protocol whose structures are as described earlier (Figure 7 and Figure 8). In

the following sections, lists of the transmitter and receiver subroutines will be given. The

algorithms for the subroutines are shown in Figure 17 and Figure 18.

1. Subroutines used by the transmitter

Enqueue (DATA, OUTBUF): Inserts the data packets at the end of the

transmission buffer of OUTBUF for transmission to the receiver.

Dequeue (DATA, OUTBUF): Returns the data packet in the buffer OUTBUF

following the TRANS pointer and advances the TRANS pointer to the next location.

56

Empty (OUTBUF): Returns true if TRANS = TAIL, indicating that there are no

data packets in the transmission buffer of OUTBUF.

Full (OUTBUF): Returns true if there are no empty buffer locations in OUTBUF

to write data packets

UpdateOUTBUF (OUTBUF, LWr): Advances the RETRANS pointer of

OUTBUF so that it points to the buffer location just before the first packet of block number

LWr, thus leaving the acknowledged packets out of the retransmission buffer area.

Expired (LUP): This function returns the sequence number of the expired block,

or if none of the blocks has expired, it returns zero.

Insert (UWt, LUP): After the transmission of a whole block of packets has been

completed (block number UWt), this procedure makes an entry into the LUP table for the

block and initializes the retransmission counter. The initial value of the retransmission

counter is calculated by RTD / Tin + cons as explained previously.

UpdateLUP (LUP, LOB, LWr, k): Every time a control packet is received

from the receiver, the transmitter updates the LUP table by using this procedure. To update

the table, the ACK bits of the acknowledged blocks are set to 1, thereby allowing new

entries to be made into the table, and the retransmission counters of the unacknowledged

blocks are decremented by k, which is read from the receiver control packet

Empty (LUP): This function returns true if the ACK bits of all the blocks in the

LUP table are 1.

Balance (LOB, HOLD, LWr, LWt, NOU): Every time a control packet is

received from the receiver, this procedure decrements NOU by the number of newly

acknowledged blocks. To accomplish this, the bit-map of the previous control packet,

which is stored in the variable HOLD is compared with the LOB field of the currently

received control packet.

57

Acceptable (Connack): This function evaluates the connection parameters in

the Connack packet received from the receiver. If the parameters are acceptable, it returns

the boolean result TRUE to the transmitter.

Enqueue (DATA, OUTBUF)

OUTBUF((TAIL + 1) mod OUTBUF'LENGTH):= DATA;
TAIL :=(TAIL + 1) mod OUTBUF'LENGTH;

end

Dequeue (DATA, OUTBUF)
begin

DATA:--OUTBUF((TRANS + 1) mod OUTBUF'LENGTH);
TRANS:= (TRANS + 1) mod OUTBUF'LENGTHF

end

Empty (OUTBUF) return BOOLEAN

return TRANS = TAIL;
end

FuB (OUTBUF) return BOOLEAN

return (TAIL + 1) mod OUTBUF'LENGTH = RETRANS;

UpdateOUTBUF (OUTBUF, LW,)

RETRANS:- ((LWr - 1) * block.size) mod OUTBUF'LENGTH;
end;

Expired (LUP) return NATURAL
begin

for I in LUP'RANGE loop
if LUP(1).ACK = 0 and then LUP(I).COUNT =0 then

return LUP(I).SEQ;
else

return 0;
end if,

end loop;
end;

Figure 17: Transmitter Subroutines

58

Insert (UWt, LUP)

LUP ((UWt- 1) mod LUP'LENGTH + 1):= (SEQ => LUWt,
COUNT => RTD I Ti + cons
ACK => 0);

end;

UpdateLUP (LUP, LOB, LWr, k)
begin

--Set the ACK bits of acknowledged blocks to 1
for I in LUP'RANGE loop

if LUP(I).SEQ < LW, then
LUP(I).ACK:= 1;

end if;
end loop;

for I in LOB'RANGE loop
if LOB(I) = I then

LUP ((LWr + I - 2) mod LUP'LENGTH + 1).ACK:= 1;
end if,

end loop;

-Decrement the counters of unacknowledged blocks
for I in LUP'RANGE loop

if LUP(I).ACK = 0 then
if LUP(I).COUNT <= k then

LUP(I).COUNT:= 0,
else

LUP(I).COUNT:= LUP(1).COUNT - k;
end if;

end if;
end loop;

end;

Empty (LUP) return BOOLEAN
begin

for I in LUP'RANGE loop
if LIJP(I).ACK = 0 then

return FALSE;
end if,

end loop;
return TRUE;

end;

Balance (LOB, HOLD, LWr, LWt, NOU)

for I in LWt.. LW, - I loop
if HOLD(I - LWJ + 1) = 0 then

Figure 17: Transmitter Subroutines (Cont)

59

NOU := NOU - 1;
end if;

end loop;

for I in LWr.LWt + L - 1 loop
if (LOB(I - LWr +1) = 1) and (HOLD(I - LWt + 1) =0) then

NOU := NOU- 1;
end if;

end loop;

for I in (LWt + L - LWr + 1) .. L loop
if LOB(1) = I then

NOU:= NOU- 1;
end if;

end loop;
end;

Acceptable (Conn ack) return BOOLEANbegin
for all negotiated parameters in Conn ack loop

if parameteri is not acceptable then
return FALSE;

end if;
end loop;
retuEn TRUE;

end;

Figure 17: Transmitter Subroutines (Cont)

2. Subroutines used by the receiver

The following subroutines are used in the receiver. Detailed algorithms for the

subroutines are shown in Figure 18.

Wait (INBUF, RECEIVE, waitlim): This function is used only in mode 1. It

returns true if the head packet of INBUF has not been received and there are not waitlim

number of packets in INBUF after the head (not necessarily in the subsequent locations). If

Wait is true, then the receiver waits until the next calls of this function return false, which

happens if the missing packet is received or if the number of packets in the buffer becomes

equal to wait-lim, and then it skips the head location.

Order-insert (DATA, INBUF, RECEIVE, LWr, duplicate): This procedure

has three important tasks: (i) detects duplicate packets, (ii) if the packets are not duplicate,

60

inserts them into their places in the buffer, calculated from the packet sequence numbers,

(Mii) sets the receive bit to indicate that the corresponding INBUF location holds a data

packet. A packet is a duplicate if the packet sequence number is less than LW,, or if the

corresponding RECEIVE bit is set to 1. In this case the packet is discarded.

Retrieve mode2 (INBUF, RECEIVE, bufferavail): This procedure is used in

mode 2 to retrieve the data packets from INBUF and pass them to the host (a different

retrieval procedure is used in mode 1, since the algorithm used in mode 1 is different).

Packets are retrieved from the buffer only if they are in sequential order. The pointer HEAD

holds the index of the INBUF location that contains the next data packet to be retrieved.

The RECEIVE bit corresponding to this pointer is checked to determine if the packet has

been received. If tie RECEIVE bit is 1, the packet is retrieved from the buffer, passed to

the host and the head pointer is advanced. If this packet completes retrieval of an entire

block of packets, then all of the RECEIVE bits for the block are reset to 0 and bufferavail

is increased.

Retrieve-model (INBUF, RECEIVE, AREC, buffer-avail, LWr, UWr,

LOB): This is the procedure used in mode 1 to retrieve the data packets from INBUF and

pass to the host. This procedure is called only when a data packet can be retrieved from the

buffer. After checking the RECEIVE array, if there is a data packet in the head location of

INBUF, then the packet is retrieved from the buffer, passed to the host and the head pointer

is advanced.

If the head location of RNBUF does not contain a data packet, then this location is

skipped. The RECEIVE bit for the skipped packet is set to 1 and a check is done to

determine whether a whole block has been received, in which case the variables are updated

to provide the acknowledgment of the completed block.

Empty (INBUF, RECEIVE): This function returns true if the INBUF locations

after HEAD are empty (in a ring buffer, all the buffer locations up to the beginning of the

block which contains the HEAD should be checked).

61

Processpacket (Data seq, RECEIVE, AREC, Buffer-avail, LWr, UWr,

LOB): This procedure checks if the reception of a data packet completes an entire block in

order to update some parameters. The completion of a block is determined by checking the

RECEIVE bits. If a block is completed, then bufferavail is decreased, AREC bit for the

block is set to 1, LW, and UW, are updated and AREC is copied into LOB. Some of these

variables are copied later into the receiver control packets to acknowledge the completed

blocks.

Wait (INBUF, RECEIVE, WAIT_LIM) return BOOLEANbegin
NUM_PACKETS := 0;
INDEX:= HEAD mod INBUTF'LENGTH+ 1;
BLOCKSTART:= ((HEAD - 1) / blocksize) * block._size + 1;

if RECEIVE (HEAD) = I then
return FALSE;

else
-Check if WAIT LIM number of packets have been received
while INDEX /= BLOCKSTART and then NUMPACKETS < WAIT..LIM loop

if RECEIVE(INDEX) = 0 then
INDEX:= INDEX mod INBUF'LENGTH + 1;

- else
NUM_PACKETS:= NUM_PACKETS + 1;
INDEX:= INDEX mod INBUF'LENGTH + 1;

end if;
end loop;
if NUMJPACKETS = WAITLIM then

return FALSE;
else

return TRUE;
end if-

end if,
end;

Order insert (Data.acket, INBUF, RECEIVE, LW,, DUPLICATE)
begin

-Check if the data packet is a duplicate
if (((Data_packet.SEQ - 1) / blocksize + 1) < LW,) or else

(RECEIVE((data_.packet.SEQ - 1) mod RECEIVE'LENGTH + 1) =1) then
DUPLICATE := TRUE; -Discard the packet

Figure 18: Receiver Subroutines

62

L ____ _____ _________________

else
DUPLICATE:= FALSE;
-Insert into the buffer
INBUF ((data.packeLSEQ - 1) mod INBUF'LENGTH + 1):= daapacketDATA;
-Update RECEIVE
RECEIVE((data.packe.SEQ- 1) mod RECEIVE'LENGTH + 1):= 1;

end if;
end;

Retrieve .mode2 (INBUF, RECEIVE, bufferavail)begin
--Check if there is a packet in the buffer element
if RECEIVE(HEAD) = I then

Pass the data to the host
-Check if a whole block has been received
if HEAD mod block_size = 0 then

-Reset receive bits for the block
for I in HEAD - blocksize + I .. HEAD loop

RECEIVE) := 0;
end loop;
INC (buffer._avail);

end if;
-Increment head pointer
HEAD :=HEAD mod INBUF'LENGTH + I;

end if,
end;

Retrieve model (INBUF, RECEIVE, AREC, buffer-avail, LW, UWr, LOB)

BLOCKCOMPLETED:= TRUE;
INDEX:= 0;
BLOCKSTART:= ((HEAD - 1)/blocksize) * blocksize + 1;
-Check if there is a packet in the buffer element
if RECEIVE(HEAD) =1 then

Pass the data to the host
else

-Skip over the unreceived packet
RECEIVE (HEAD):= 1;
-If all of the packets in the block have been passed then ack the block
while BLOCK COMPLETED and then INDEX < blocksize loop

if RECEIVE(BLOCKSTART + INDEX) = 0 then
BLOCK COMPLETED:= FALSE;

else
INC (INDEX);

end if,
end loop;

if BLOCKCOMPLETED then
-Decrement buffer avaialable

Figure 18: Receiver Subroutines (Cont)

63

buffer_avail := buffer avail - 1;
--Update LWr and update AREC
INC (MWr);
while AREC((LWr- 1) mod AREC'LENGTH + 1) = 1 loop

AREC((LWr - 1) mod AREC'LENGTH + 1):= 0,
INC (LWr);

end loop;
-Update UW,
if LWr > UWr then

UWr := LWr;
end if;
-Update LOB
for I in LOB'RANGE loop

LOB(I):= AREC((LW, + l- 2) mod AREC'LENGTH + 1);
end loop;

end if;
end if;
-Check if a whole block has been passed
if HEAD mod block_size = 0 then

-Reset receive bits for the block
for I in HEAD - blocksize + I .. HEAD loop

RECEIVE() := 0;
end loop;
INC (bufferavail);

end if-,
-Increment head pointer
HEAD:= HEAD mod INBUF'LENGTH + 1;

end;

Emipty (INBUF, RECEIVE) return BOOLEANbqon
INDEX:= HEAD mod INBUF'LENGTH + 1;
BLOCK_START:= ((HEAD - 1)/ block.size) * block-size + 1;
--Check HEAD
if RECEIVE(HEAD) = I then

return FALSE;
else

-Check if there is a packet in the buffer after HEAD
while INDEX /= block_start loop

if RECEIVE(INDEX) = 1 then
return FALSE;

else
INDEX := INDEX mod INBUF'LENGTH + 1;

end if;
end loop;

end if;
return TRUE;

end;

Figure 18: Receiver Subroutines (Cont)

64

Procespacket (Dataseq, RECEIVE, AREC, buffer-avail, LWr, UWr, LOB)

BLOCKNUM (Daaseq - 1) / blocksize + 1;
BLOCK.COMPLETED:= TRUE;
INDEX:f 0;
BLOCK-START:f (((Data-seq - 1) mod RECEIVE'LENGTH) / blocksize) * blocksize + 1;
-Check if an entire block has been received
while BLOCKCOMPLETED and then INDEX < BLOCKSIZE loop

if RECEIVE(BLOCKSTART + INDEX) = 0 then
BLOCK_COMPLETED:= FALSE;

else
INC (INDEX);

endif;
end loop;

if BLOCK.COMPLETED then
-Decrement buffer-avaialable
BUFFEIAVAIL:f BUFFERAVAIL - 1;
-Update LW, and/or update AREC

if BLOCKNUM = LWr then

INC (LWr);
while AREC((LW, - 1) mod AREC'LENGTH + 1) = I loop

AREC((LW, - 1) mod AREC'LENGTH + 1):=0;

INC (LW,);
end loop;

-else
AREC((blocknum - 1) mod AREC'LENGTH + 1) 1;

end if;
-Update UW,
if BLOCKNUM > UW,. then

UWr :.= BLOCKNUM;

end if-,
-Update LOB
for I in LOB'RANGE loop

LOB([):= AREC((LW,. + I - 2) mod AREC'LENGTH + 1);

end loop;
end if;

end;

Figure 18: Receiver Subroutines (Cont)

65

VI. ANALYSIS

The formal SCM specification of the SNR protocol is given in the previous chapter.

As with any other protocol specification, the next step is to analyze the specification to

verify that the protocol is free from logical errors like deadlock, unspecified recep'ion,

unexecuted transitions and blocking loops. This chapter presents the work done on the SNR

protocol during this verification phase.

Two different methods are applied to the protocol for analysis: system state analysis

and software simulation with a programming language (ADA). Since the protocol was

specified with the SCM model, the first intent was to apply the system state analysis.

However, it was found out that applying the system state analysis alone, just as it was

defined in Chapter IV of this thesis was not sufficient to make a complete analysis. The

reasons for this difficulty will be explained later in this chapter. Due to the time limitations,

instead of scrutinizing the insufficiencies and trying to introduce different methods to hclp

the system state analysis, a completely separate method was applied by simulation to

determine whether the specification was logically correct.

Neither of these efforts gave a complete analysis, but most aspects of the protocol were

analyzed, and when taken together, a high degree of confidence in the correctness of the

protocol was gained. Also, numerous deficiencies and mistakes in the specification were

discovered and corrected. In the following sections, these analyses and their results will be

discussed.

A. SYSTEM STATE ANALYSIS OF THE SNR PROTOCOL

For simple protocols, the system state analysis generates a reasonable number of

system states so that the analysis can be conducted manually without difficulty. However,

the specification of a practical protocol can be so complex, containing many states,

transitions and variables, that it may not be feasible to apply the analysis manually. This

66

problem brings in the idea of automation of the analysis, that is writing a program which

produces all of the reachable system states beginning from the initial system state. This has

been the subject matter of other studies. In [ROTH92] implementation of such a program

is presented. The program executes the analysis procedure against any two-machine

protocol specified using the model. Another study presented in [BULB93] extends this

program for arbitrary number of machines (up to 8).

Since manual application of the system state analysis to the eight-machine SNR

protocol was not practical because of the existence of too many variables, a similar but

separate program special for the SNR protocol was written using the programming

language ADA to automate the analysis. The mechanical nature of the analysis method

conveniently lent itself to such an automation. The output generated with this program is

later manually converted into an analysis graph. In this section, the main algorithm of this

program, its output for the connection management phase, and the difficulties encountered

during the direct application of the system state analysis will be presented.

i. Software Tool For the System State Analysis of the SNR Protocol

The analysis program constructs the system state analysis graph in the computer

memory using access type variables (pointers) of ADA. The main algorithm is basically the

4-step algorithm given in Chapter IV. In addition, a hashing algorithm is used to make the

searches faster. Each node of the graph is represented as a record variable which contains

the following: a state tuple of all the machine states, all of the variables used in the protocol,

including the buffers and the transmission channels, a pointer to the outgoing transition list

and a pointer to the next node in the graph. The predicate action table is programmed into

subroutines and a package is formed consisting of the procedures each of which represent

a machine in the PAT. These procedures are used to determine the possible transitions that

can be taken from a system state and the new variable values after a transition is taken.

The analysis starts by generating an initial system state node, where all the

machines are in their initial states and the variables have their initial values. This is the first

67

step of the algorithm. Thereafter, for each unexplored node, the procedure ANALYZE is

invoked. This is the main analysis procedure and executes step 2 and 3 of the analysis

algorithm. Figure 19 shows the algorithm of this procedure. It creates the children of the

current parent, and for each child, executes a search in the graph to determine if there is an

equivalent system state which has already been generated. If an equivalent system state is

found, then the child is deleted and its transition pointer is changed to the found system

state. Otherwise, the child is added to the graph and the analysis continues with the next

unexplored system state.

procedure ANALYZE (CURRENT)
begin

create all the children nodes of the current node according to the tuple and
the variable values

for each child loop
find the transitions that can be taken from this child
search the graph for a node with the same tuple as the child
for each node found loop

if the node has already been explored then
compare its outgoing transitions with the outgoing transitions of the child

else
find the outgoing transitions of the node
compare its outgoing transitions with the outgoing transitions of the child

end if,
if an equivalent node is found then

exit the loop
end if.

end loop;

if an equivalent node is found then
change the pointer to the child to the equivalent node
delete the child node

else
insert the child to the graph

end if-,
end loop;

end

Figure 19: Algorithm of procedure ANALYZE

The program allows the analysis to be conducted up to a certain break point,

which is specified by the user. After the specified portion of the analysis has been

68

completed, the user has the options of looking at the variable values at any system state,

obtaining a printout of the analysis in the computer memory or continuing the analysis by

specifying a new break point.

2. Results of the System State Analysis

a. Connection Establishment Phase Analysis

The system state analysis is first applied to the connection establishment

phase. The output of the program was manually converted into a graph which is shown in

Figure 20. In this graph, a system state tuple is represented with eight integers enclosed in

parenthesis and a subscript. First four integers correspond to the states of the transmitter

machines TI, T2, T3 and T4 respectively, and the last four integers correspond to the states

of the receiver machines R1, R2, R3 and R4 respectively. If there is more than one system

state with the same tuple, then a different subscript is used to indicate the difference.

The analysis begins with all machines in state 0, which is the system state

(0000-O000)0. The process is initiated when the transmitting host gives a signal to the host

interface T4. Then, the machines do their respective jobs following the connection

establishment procedure defined in Chapter 111. The analysis graph shows that if the

connection establishment is successful, the process will lead to system states (0201-0000)

or (0201-0100), and the data transfer phase will be entered. Unsuccessful attempts will lead

back to the initial state.

The connection analysis graph shows a total of 33 system states, of which 17

are unique and 16 are duplicate. This graph analyzes every possible event that can happen

during the connection establishment phase and also gives a better understanding of the

sequence of events that follow one another. Furthermore, it carries some other information

which leads to the conclusion that the system state analysis alone is not sufficient to analyze

this protocol as explained below:

For example, consider the section of the graph in the Figure 20 marked with

dashed lines. There are three important points to be noticed: (i) clockT and okT transitions

69

I1 i

0 41 I
o

4

-9
CCD¶ >%ien CO

-- - 1 a
0

-5.

Bi -R
t -

9,

70

make a cycle between two system states (0101 -0000)0 and (0601 -0000)0, (ii) clockT,

timeoutT and retry transitions make another cycle, (iii) machine T2 is allowed to make two

transitions, timeoutT and okT from the same system state (060 1-0000)0.

As it can be seen in the graph, cycles exist in the graph at various other places,

as well. The existence of cycles in an analysis normally indicate some logical errors in the

protocol. However, the cycles in this case are not due to protocol errors and there are no

such cycles in a global analysis. Causing cycles is a natural consequence of the system state

analysis, when it is applied to this protocol straightly because of the counter variables. In

this example, during the clockT transition between the two system states (0101 -0000)0 and

(06014-000)0 the only variable whose value changes is the counter variable delay (see

Machine T2 PAT on page 45). It is incremented going from state (0101-0000)0 to state

(0601-0000)0. During the transition okT, none of the variables are changed and a system

state, say (0101-0000)x is reached (only machine T2 goes from state 6 to state 1) for all

integral value x. This state has exactly the same outgoing transitions as (0101-0000)0

(because having the variable delay at a value which is one larger than it was before does

not affect the outgoing transitions) so, according to the system state analysis, it is exactly

equivalent to the state (0101-0000)0. Therefore the state (0101-0000)x is deleted and the

transition is connected to its equivalent state (0101-0000)0, causing a loop to be formed.

The same reasoning can be applied to the second loop: after taking the retry

transition from state (0701-0000)0 to state (0101-OOOO)y for all integral value y, the only

variable whose value changes is the counter attempts, but increasing the value of attempts

does not cause a different set of outgoing transition to be taken from the state (0101 -OOOO)y

and the transition is connected to the equivalent state (010 1-0000)0, causing the loop.

From this example the effect of the counter variables on the system state

analysis becomes clear: counter variables may assume different values as the transitions are

taken, however, the system state analysis is not interested in the values of the variables but

71

the system state tuples and the outgoing transitions, which do not necessarily change every

time the value of a counter variable changes.

The other point mentioned above, allowing machine T2 to take multiple

transitions from state (0601-0000)0, is related with the "counter variables problem" but it

is an artificial case. It should be interpreted that T2 can either take the transition timeoutT

or the transition okT, depending on the correct values of the variables (obviously, it cannot

be in two different states at the same time). Without this assumption, it is impossible to

continue the analysis, since the transition timeoutT can never be taken from the system state

(060 1-0000)0 because of the cycling of the transitions clockT and okT. This change makes

the graph in Figure 18 more intuitive than an actual system state analysis graph: we assume

that the machines get into the loop, take clock and ok transitions several times successively,

therefore causing the transport entity to "wait" for the acknowledgment or some other

message from the other entity, and get out of the loop when the variable values force it. This

assumption works here, because the cycle consists of only two transitions and the transition

ack can be taken either from (0601 -00)0 or (0 101-0000)0, but it does not necessarily hold

in general.

The "counter variables problem" outlined above appears whenever some

counters are incremented and, depending on their values, some decisions are made whether

to take a transition or not. The problem becomes more serious in the data transfer phase

causing unexecuted transitions. However, this does not necessarily mean that the system

state analysis cannot be applied to this protocol, since it gives useful results at other places

of the analysis. As it can be seen from the graph, the connection establishment will be

completed without deadlock (if the physical link is up), or the system will return to the

initial system state without deadlock. In addition to this, during the process of carrying out

the analysis, a greater understanding of the protocol and its behavior in different situations

was gained as well as having detected some errors. All of the data structures and the

72

communication between the machines have been inspected and many deficiencies have

been discovered, some of which were pointed out in the previous chapters.

In order to apply the system state analysis to this protocol without generating

loops, it must be supported with some other methods where it fails. An example of such a

method will be presented below. This can also be a subject of further research.

b. Data Transfer Phase Analysis

The system state analysis algorithm outlined in Chapter IV is applied to the

mode-0 operation of the protocol with the help of the analysis program. A small portion of

the computer output is manually converted into a graph as shown in Figure 21.

(1201-0100)o

(0201-0200)o ,- -0 2 0 1
0
1 0

)r -(02O11-0100)0

tT 4 st-10 (0212-0100),

W K [sr 2 (0202.0200)0
s 'rI write-T4 .. 10 .10

_(1202.0100) 0

(1222--0100)o c kstar" (1202.0200)o Loop n

Loop I sta .

"(12 12-0200)o Wniit tesmmt~n

(1242 S)
"•[wm--eT'4 [doc•' 1212.0200), o ST

! I2 dw IodDsc

(1242-0100h .E (I-.0100)ginoIW.. (j4Q M-OlO,)i-'--ea1
2 2 2-0200),

writ' 14 (1232-0100)o (1232,020)I ('22"0100 1222-0200)2

(1222-0100), (U2•-o100)0

Figure 21: Part of Mode-O Analysis

13

The effect of the loops can be seen clearly in this figure: once the analysis gets

into a loop, it is not known if and when the analysis will get out of the loop. In fact, because

of the existence of such loops, some transitions are never executed in the analysis. For

example, consider the loop in Figure 21 marked "Loop I" which starts at the system state

(12 12 -0100)1: at this point, machine 73 is in state 1 and is waiting for the event clocktick

to occur (See "Machine 13" on page 46.) If the variable sent is FALSE after the clocktick,

then machine T3 compares the variable count with k to decide whether a control packet

should be send or not. If count is equal to k (which it is at the start-up), it takes the transition

timeout whereby it transmits a control packet. Then, depending on the value of the variable

scount, it takes the transition nodisc (scount < Lim) or disc (scount = Lim). Since at the

start-up the first condition is true, it takes the nodisc transition and completes the "Loop

I." A similar argument can be made for the other loop, "Loop II." As a result, machine T3

can never take the transitions delay and disc. There are other transitions which are actually

taken in a global analysis but cannot be shown in the system state analysis graph because

of the same reason.

c. - An Improved Method

To solve the looping problem caused by the counter variables, a method

which "unwraps" the loops without changing the specification and the system state analysis

algorithm is used. In effect, this method consists of applying a global system state analysis

to the blocked parts of the analysis.

The idea of this method originates from the fact that two system states are

equivalent if and only if the tuples are the same and the outgoing transitions are the same.

Therefore, if a numeric index is appended at the end of the transition names, which takes

on values equal to the updated counters (or any variables or a combination of them), then

two system states can be equivalent if and only if (i) they have the same tuple (ii) the same

set of outgoing transitions are enabled and (iii) values of the critical variables (counters in

74

this case) are the same. This ensures that a sy.tem state will not be considered as an

equivalent system state unless it has the same counter variable values.

In order to illustrate how this method "unwraps" the loops, consider a

previous example from the connection establishment phase: the clock-ok cycle. The

transition names clock, ok, timeout and retry are changed as shown in TABLE 10 by

appending indexes which assume the values of the two counter variables delay and

attempts:

TABLE 10: INDEXED TRANSITIONS FOR MACHINE T2

Transition Indexed Transition Possible

Name Name Transitions

clock clock *ty• clocko0 , clock 1,0 ,
clock0,1, clock1,1

ok Okdedaynemps okj,0,
okl1,

timeout tIneoutijtmpl timeouto,
timeout1

retry retrya.,, retry,

- In this case, it is assumed that both delay and attempts can take on values from

the set (0, 1, 2). Possible values of these variables are determined according to the predicate

action table of machine T2 which is shown on page 45. Note that if the variable delay gets

the value 2 when machine T2 is in state 6, then the transition timeout is taken, and if the

variable attempts gets the value 2 when T2 is in state 7, then the transition quit is taken.

Using these indexed transitions, the graph shown in Figure 22 can be obtained for the

previously discussed part of the analysis. This graph looks like a global analysis graph,

however, in contrast to the global analysis, not all the variables are considered and the

whole analysis generates less system states than the global analysis.

As it can be seen in this example, this method does not require the

specification to be changed in order to eliminate the cycles, and uses all the advantages of

the system state analysis. Also, it is suitable for automation. This method was applied to the

75

mode-0 data transfer phase analysis of the SNR protocol and it successfully "unwrapped"

the loops. On the other hand, besides these advantages, it also brings an old problem with

it: the state explosion problem. By using the modified version of the analysis program, over

100,000 system states were generated for this simplest mode, and the analysis stopped only

because of storage error.

signal

(000 1-O000)o (0701 _0000),..* (0701-0100)o

Icreque retryk
(0o01-0100)o.•.._-(0101 0000)0 (010000)2------ (0101-0100)2

/ tkI'° alckq ai-tD elock°., fail
"(0 6 0 1 0 1 0 0)o (0601 OO0)0 (0601 000)2-ý (0601-0100)%

ok1 ,0 ok1.1 ack

(0101!0000)1 (0101-0000)2

(060I0100ck)
clock(0

0

(0601-0100) *- (0601-M), (0601W quit (070 "-000

ackI ackj Jack

(0601-1000), (0701-0100), (0001-0000),

Figure 22: Sample Analysis Using Indexed Transitions

At this point, some comments are necessary: the insufficiencies pointed out in the

previous paragraphs are not indications of inapplicability of the system state analysis to this

protocol. The analysis is capable of producing useful results, however the nature of the

insufficiencies need to be studied and at those places the method need to be enhanced by

some other method, such as the one outlined above. Also, the some limitations could be

introduced to the use of counter variables in the specifications. Analyzing the problem

further is beyond the scope of this thesis, and it should be emphasized that this work alone

can not prove the inadequacy of the analysis method.

76

B. SOFTWARE SIMULATION OF THE SNR PROTOCOL

Simulation is not as reliable as analysis to verify that a protocol is free from logical

errors, for it cannot test every possibility. The results may depend on the implementation

of the runtime environment. Nevertheless, it is a valid verification method and is used to

further test the SNR protocol.

1. General Description

ADA's tasks are used to simulate each machine and the communication channels.

The machine tasks are written so that their structures reflect the FSM diagram and the PAT

specification of the machines as shown in Figure 23: machine states are represented by case

statements and the predicate action table is represented by if clauses.

task body MACHINE T1 is
STATE: INTEGER := 0;
Other local variable declarations

delay 10.0; -Wait for the initialization of the shared variables
while STATE = 0 loop

Wait for the "start transition" to be activated
end loop;
while STATE /= 0 loop
- case STATE is

when 1 =>
if predicate then

action
STATE:=...

elsif predicate then
action
STATE:=-

end if;
when 2 =>

if predicate then
action
STATE:=...

elsif predicate then
action
STATE:=...

end if,
end case;

end loop;
end MACHiNETI;

Figure 23: General Task Structure

77

The data structures used in the simulation are chosen to be exactly the same as in

the specification. All of the shared variables in each communicating entity are kept together

in a "locked record" in order to prevent the tasks attempting to update the variables at the

same time. The inter-process communication is achieved through the shared variables of

the protocol, and ADA's rendezvous mechanism is used to coordinate the access of the

tasks to these variables. Therefore, the simulation is far from a real implementation, and it

somewhat retains the abstractness of the specification. The simulation is similar to applying

the system state analysis without generating a complete graph.

The simulated transmitter machines read a text file whose name is given by the

user into character strings representing the data packets. The data packets are "transmitted"

to the receiver machines through the simulated channels. The channel tasks store the data

packets in local linked lists and reorder or delete some of the packets at random, simulating

the packet losses and reordering. For the simulation purposes, the data packet and the

transmitter control packet formats are assumed to be fixed. Receiver control packets have

the same format as in the specification. Upon reception of the data packets, the receiver

tasks process the packets, store them in the buffer, acknowledge the completed blocks, and

print the received information on the monitor.

Some variables are entered by the user to simulate the negotiated variables and

the channel loss rates. These are data packet size (in number of characters), block size,

operation mode, maximum window size, buffer size in the transmitter, retransmission

counter initialization value, values of the variables reset, maxattempts, kLim, Um, Ti, and

channel loss rate.

2. Simulation Results

As it was noted before, the purpose of the simulation was to check the correctness

of the protocol specification, that is whether the protocol, as it was specified in Chapter V

of this thesis, could transfer data packets from the transmitter to the receiver without being

deadlocked. Therefore, rather than applying any performance tests, the simulated protocol

78

is tested for logical correctness in all the three modes of operation under different

conditions with different values of the negotiated variables and channel loss rates.

While the simulation program was being developed and the tests were being

conducted, the values of the variables were checked by using the debugger of the ADA

compiler to see if the tasks simulating the FSMs could communicate as required. Also,

some output statements were included in the code to trace the variables faster. In this way,

several errors in the specification have been detected and corrected. By making the

channels arbitrarily "loose" and "reorder" the data packets, the behavior of the protocol in

such realistic conditions has been tested. It was seen that the resultant simulation program,

which represented the protocol, could transfer the data packets successfully to the receiver

tasks to be printed on the monitor without deadlock, unspecified reception, blocking loops

or any other kind of logical errors.

This result indicates the correctness of the protocol specification with a relatively

high degree of confidence. However, it does not strictly prove that the specification is free

from errors, and the reason is that it cannot cover all the possible situations, some of which

may end up causing a logical error. On the other hand, through this simulation process,

most of the structures of the protocol are reviewed and a more detailed specification is

obtained. It is the author's belief that the SNR protocol is now ready to be implemented to

produce a prototype protocol. Then, it will be possible to make some performance

measurements to compare it with the other transport protocols.

79

VIL CONCLUSION

A. SUMMARY OF THE RESEARCH

The objectives of this thesis has been to present the design, specification and analysis

of the SNR protocol which is designed for providing high throughput consistent with the

evolving high speed physical networks based on fiber optic transmission lines. The SNR

protocol tries to overcome the difficulties encountered by the current transport protocols

which are hindering utilization of the full potential offered by the fiber optic technology. It

has some unique features which provide a high processing speed by simplification of the

protocol, reduction of the processing overhead and utilization of parallel processing.

The SCM specification of the SNR protocol given in [MCAR92] has been improved,

and some of the abstract structures of the protocol have been redefined to accomplish an

analysis. Two different methods were applied to the protocol for analysis: system state

analysis and software simulation with a programming language (ADA).

Since the protocol was specified with the SCM model, the first intent was to apply the

system state analysis. For this purpose, a program was written which implemented the

analysis specifically for this protocol. However, it was found out that a straightforward

application of the system state analysis algorithm was not sufficient to make a complete

analysis due to the effect of the counter variables which caused cycles in the analysis graph.

To solve the looping problem caused by the counter variables, a method which "unwraps"

the loops without changing the specification and the system state analysis algorithm was

suggested. With this method, a kind of global system state analysis was done on the blocked

parts of the analysis. One major drawback of this method was the state explosion problem.

Finally, the protocol was simulated using concurrent programing with ADA tasks in

which each machine and the communication channels were represented with a task. The

machine tasks were written so that their structures reflected the FSM diagram and the PAT

80

specification of the machines. Therefore, the simulation was different than a real

implementation, and it somewhat retained the abstractness of the specification. This

simulation was similar to applying the system state analysis without generating a complete

graph. It was seen that the resultant simulation program, which represented the protocol,

could transfer the data packets successfully to the receiver tasks without deadlock,

unspecified reception, blocking loops or any other kind of logical errors.

B. CONTRIBUTIONS OF THIS THESIS

This thesis has the following contributions:

1. A complete connection establishment analysis of the protocol has been done.

2. The system state analysis has been applied to the data transfer phase and a partial

analysis has been accomplished. "The analysis has not been completed because these

analyses have revealed a problem related with the looping effect of the counter variables in

the system state analysis. A possible solution to this problem has also been suggested.

3. To do a further analysis, the protocol has been simulated and its ability to handle

errors has been tested by allowing the communication channels to "lose" or "reorder" the

messages at-random.

Also, during these analyses the deficiencies found in the previous specification have

been corrected and the specification has been improved. These analyses have provided a

higher level of confidence in the correctness of the protocol as well as a better

understanding.

C. FURTHER RESEARCH OPPORTUNITIES

This thesis can form the starting point of two types of research: (i) further research on

the SNR protocol and (ih) improvement of the system state analysis.

An important question concerned with the SNR protocol is whether the protocol is

efficient enough to provide the high throughput which is expected from the lightweight

transport protocols. To answer this question, the protocol needs to be implemented in

81

software and realistic performance tests need to be performed. The simulation program

written for the analysis of the protocol can form the basis for this kind of research.

Another research can be concentrated on the system state analysis itself. The

difficulties and insufficiencies related with the application of the system state analysis need

to be studied further, and the conditions under which the system state analysis may be

applied in place of global analysis need to be determined. In doing this, the problem areas

can be located and the balance between the states and the variables in these areas of the

protocol specification can be examined to solve the looping problem.

To overcome the state explosion problem, an attempt can be made to split up the

protocol into smaller pieces and apply the system state analysis to each piece. Then it can

be shown that when all those pieces are combined together, a complete analysis can be

obtained. This may require using some trial and error and therefore using the analysis

program.

82

LIST OF REFERENCES

[BRIN85] Brinksma, E., "A tutorial on LOTOS," Proc IFIP WG 6.1 5th Int Workshop
on Protocol Specification, Testing and Verification, Toulouse-Moissac,
France, June 10-13, 1985.

[BUDK87] Budkowsky, S., Dembinsky, P., "The Formal Specification Technique
Estelle," Comp. Networks ISDN Syst 14, 1987.

[BULB93] Bulbul, Z., B., A Protocol Validator for the SCM and CFSM Models,
Master's Thesis, Naval Postgraduate School, Monterey California, June
1993.

[CAST85] Castenet, R., Dupuex, A., Guitton, P., "Ada, a Well-suited Language for the
Specification and Implementation of Protocols," Proc IFIP WG 6.1 5th Int
Workshop on Protocol Specification, Testing and Verification, Toulouse-
Moissac, France, June 10-13, 1985.

[CLAR89] Clark, D., Jacobson, V., Romkey, J. and Salwen, H. "An Analysis of TCP
Processing Overhead," IEEE Communications Magazine, June 1989.

[DIAZ89] Diaz, M., Ansart, J.P., Courtiat, J., Azema, P., Chari, V., The Formal
-Description Technique Estelle, North-Holland Elvisier, 1989.

[DOD83] Department of Defence. Military Standard Internet Protocol, MIL-STD-
1777, August 12, 1983.

[HEAT89] Heatley, S., Stokesberry, D., "Analysis of Transport Measurements Over a
Local Area Network," IEEE Communications Magazine, June 1989.

[HOAR78] Hoare, C.A.R., "Communicating Sequential Processes," CACM, Vol. 21,
August 1978.

[LINN85] Linn, R.J., "The Features and Facilities of Estelle: a Formal Description
Technique Based upon an Extended Finite State Machine Model," Proc IFIP
WG 6.1 5th Int Workshop on Protocol Specification, Testing and
Verification, Toulouse-Moissac, France, June 10-13, 1985.

[LUND88] Lundy, G.M., Systems of Communicating Machines: A Model for
Communication Protocols, Ph.D. Thesis, School of Information and
Computer Science, Georgia Institute of Technology, Atlanta, GA 1988.

83

[LUND91] Lundy, G.M., Miller, R.E., "Specification and Analysis of a Data Transfer
Protocol Using Systems of Communicating Machines," Distributed
Computing, 1991.

[MCAR92] McArthur, R.C., Design and Specification of a High Speed Transport
Protocol, Master's Thesis, Naval Postgraduate School, Monterey, California,
March 1992.

[NETR90] Netravali, A., Roome, W., and Sabnani, K., "Design and Implementation of a
High Speed Transport Protocol," IEEE Transactions in Communications,
vol.38, #11, Nov 1990.

[ROTH92] Rothlisberger, M., J., Automated Tools for Validating Network Protocols,
Master's Thesis, Naval Postgraduate School, Monterey California,
September 1992.

[STAL91] Stallings, W. Data and Computer Communications, 3rd ed., Macmillan
Publishing Co., 1991.

[VUON83] Vuong, S.T., Cowan, D.D., "Reachability Analysis of Protocols with FIFO
Channels," Communication Architectures and Protocols, ACM SICCOMM,
University of Texas at Austin, March 8-9 1883.

84

INITIAL DISTRIBUTION LIST

Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

Dudley Knox Library 2
Code 052
Naval Postgraduate School
Monterey, CA 93943

Chairman, Code 37 CS 2
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Dr. G.M. Lundy, Code CS/Ln
Assistant Professor, Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

Dr. Man-Tak Shing, Code CS/Sh
Associate Professor, Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

Dr. Raymond E. Miller
Department of Computer Science
A.V. Willams Bldg.
University of Maryland
Collage Park, MD 20742

Dr. Krishan Sabnani
AT&T Bell Labs
Room 2C-218
Murray Hill, NJ 07974

Deniz Kuvvetleri Komutanligi
Personel Daire Baskanligi
Bakanliklar, Ankara / TURKEY

85

Golcuk Tersanesi Koniutanligi1
Golcuk, Kocaeli / TURKEY

Deniz Harp Okulu Komutanligi1
81704 Tuzia, Istanbul / TURKEY

Taskizak Tersanesi Komnutanligi1
Kasimpasa, Istanbul / TURKEY

LTJG. H. Aiphan TIPICI1
Istikial Mah. Burc Cad. Kartal Apt. B2 /D12
81240 Umnraniye, Istanbul /TURKEY

86

